

Page 1 of 107

Main Remodel

Vertical, Lateral, and Foundation Structural Calculations

Project & Location:	Mak Remodel 6521 80th Ave SE Mercer Island, WA 98040
Client:	Cypress Point Development, LLC 7530 164th Ave NE Redmond, WA 98052
Structural Engineer:	DHP Engineering, PS Structural Building Consultants 32008 32nd Ave S. #B Federal Way, WA 98001
Project Number:	22.017
Jurisdiction:	Mercer Island
Code:	2018 IBC $P_{c} \stackrel{26891}{\underset{s_{s}}{\underset{c}{1 \text{ st } \text{ F}}}} = P_{c} \stackrel{26891}{\underset{s_{s}}{\underset{c}{1 \text{ st } \text{ F}}}} = P_{c} \stackrel{26891}{\underset{s_{s}}{\underset{c}{1 \text{ st } \text{ st } \text{ F}}}} = P_{c} \stackrel{2}{\underset{s_{s}}{\underset{c}{1 \text{ st } $
Loads:	I. Vertical Live Loads Roof (Snow) 25 PSF Floor 40 PSF 4-1-22

II. Lateral Loads <u>Wind</u> Exposure C	Ва	sic Wind Speed	98	(mph)
Internal Pressure Coe	GCpi = +/-0.18 (Enclose	ed)	
<u>Seismic</u>				
Design Category	D	Occupancy Cate	egory	П
Site Class	D	Importance Fac	tor	1.00
Structural Response:	Ss	1.472 g	S ₁	0.566 g
Acceleration:	S_{DS}	1.178 g	S_{D1}	0.667 g
III. Soils Data (Assumed)				

Bearing Capacity 1500 (psf)

PROJECT NAME:	Mak Remodel		
PROJECT NUMBER	: 22.017		
DHP ENGINEERING	, PS	DATE:	2022-03-02
STRUCTURAL BUIL	DING CONSULTANTS	DESIGN B	Y: COK

Design Loads

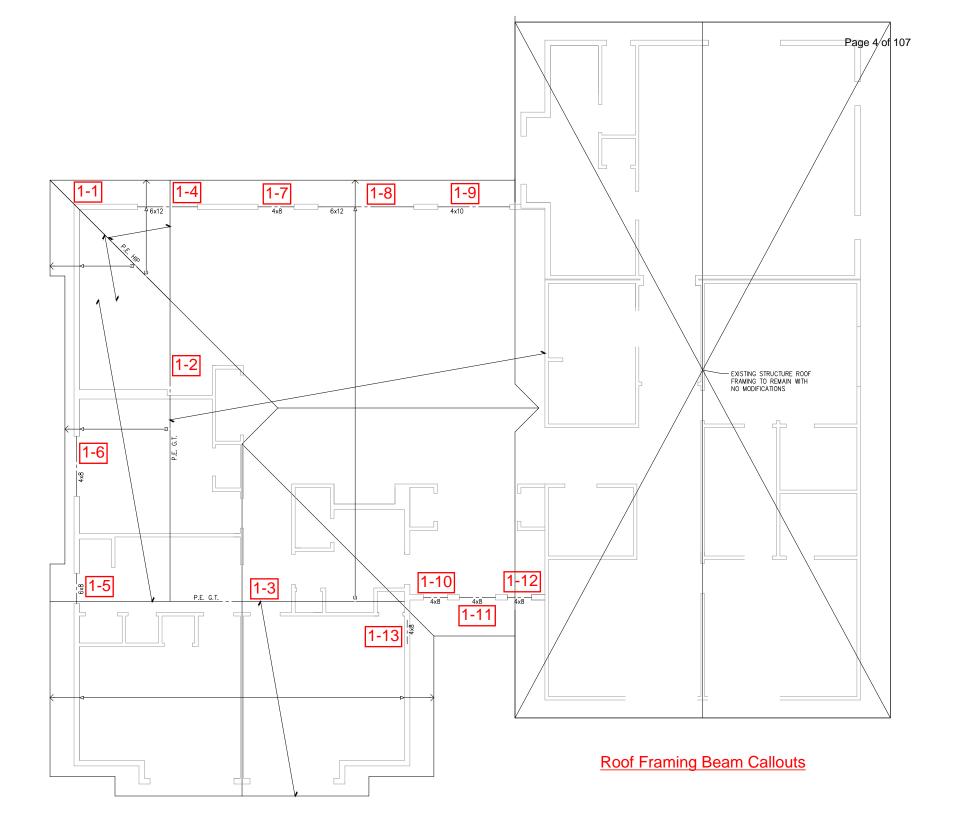
Roof Loads	
Asphalt Shingle Roofing Material	3.00 PSF
APA Rated 1/2" OSB or PW Sheathing	1.70 PSF
P.E. Trusses @ 24" o.c.	2.50 PSF
Insulation	1.00 PSF
(2) Layer of 5/8" Gypsum Ceiling Board	5.00 PSF
Mechanical & Electrical	0.80 PSF
Miscellaneous	1.00 PSF
Total Roof Dead Load:	15.00 PSF
Total Live Load:	25.00 PSF
Total Roof Load:	40.00 PSF

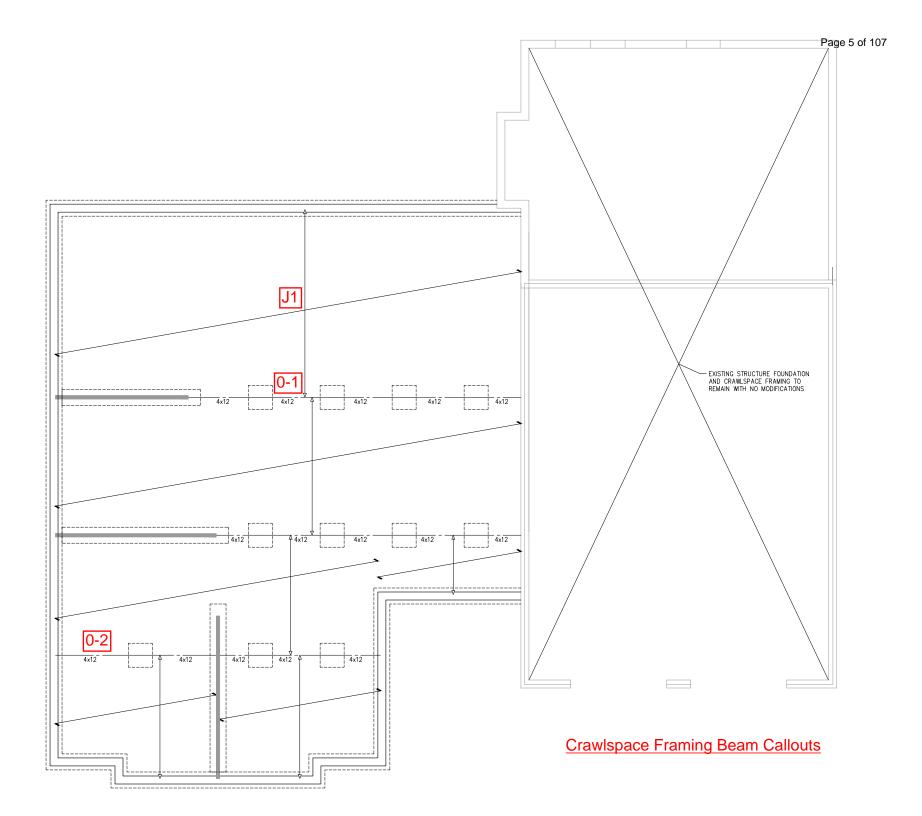
Floor Loads	
3/4" Plywood	2.30 PSF
2x_ Framing Members @ 16" o.c.	2.50 PSF
Insulation	1.00 PSF
(1) Layers of 5/8" Gypsum Ceiling Board	2.50 PSF
Mechanical & Electrical	1.20 PSF
Miscellaneous	2.50 PSF
Total Floor Dead Load:	12.00 PSF
Total Live Load:	40.00 PSF
Total Roof Load:	52.00 PSF

Mercer Island Design Criteria

TABLE R301.2(1) CLIMATIC AND GEOGRAPHIC DESIGN CRITERIA

ROOF		WI	ND DESIGN		SEISMIC			OUTDOOR DESIGN	ICE BARRIER	FLOOD	AIR FREZING	MEAN	
LOAD ^a (psf)	Speed ^b (mph)	Topographic effects ^c	Special wind region	Windborne debris zone	CATEGORY	Weathering ^d	Frost line depth	Termite	TEMP (F) - Heat/Cool	MP (F) - REQUIRED	HAZARD°	INDEX	TEMP
25	110	Yes	No	No	D2	Moderate	12"	Slight to Moderate	83/24	No	N.A.	113	53
	MANUAL J DESIGN CRITERIA												
Elevation			Latitude	Winter heating	Summer cooling	Altitic		Indoor tempe		Design tempera cooling	ature	Heating te differ	mperature ence
	338 fee	t	47°34'39''	72°F max	75°F min	0.9	9	7	2°F	75°F		48°	F
Cooling temperatu	ure differen	ce	Wind velocity heating	Wind velocity cooling	Coincident wet bulb	Dai ran		Win hum		Summer humidity			
	8°F		N.A.	N.A.	66	Medi	ium	7	5%	68%			


a. This is the minimum roof snow load. When using this snow load it will be left to the engineer's judgment whether to consider drift or sliding snow. However, rain on snow surcharge of 5 psf must be considered for roof slopes less than 5 degrees.


b. The 110 mph Ultimate Design Wind Speed (3-second gust) as adopted by the 2018 IRC/ASCE 7-10 (or if using the IBC for structural design, the 98 mph Basic Design Wind Speed as adopted by the 2018 IBC/ASCE 7-16 may be used).

c. Wind exposure category and Topographic effects (Wind Speed-up Kzt factor) shall be determined on a site-specific basis by the Engineer of Record (components and cladding need not consider topographic effects unless otherwise determined by the engineer of record).

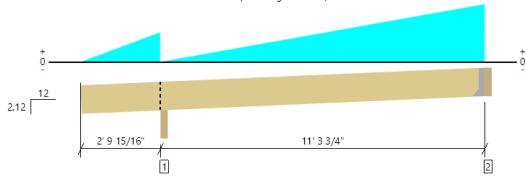
d. Weathering may require a higher strength concrete or grade of masonry than necessary to satisfy the structural requirements of this code. The grade of masonry units shall be determined from ASTM C 34, C 55, C 62, C 73, C 90, C 129, C 145, C 216 or C 652.

e. The City of Mercer Island participates in the National Flood Insurance Program (NFIP); Regular Program (No Special Flood Hazard Area). Further NFIP participation information: CID 530083, Initial FHBM Identified 06/28/74, Initial FIRM Identified 05/16/95, Current Effective Map Date (NSFHA), Reg-Emer Date 06/30/97, 53033C0654G effective 8/19/2020.

JOB SUMMARY REPORT

Page 6 of 107

Roof Framing							
Member Name	Results	Current Solution	Comments				
1-1 (For Reactions Only)	Passed	1 piece(s) 3 1/2" x 11 7/8" 1.55E TimberStrand® LSL					
1-2 (For Reactions Only)	Passed	1 piece(s) 5 1/2" x 16 1/2" 24F-V4 DF Glulam					
1-3 (For Reactions Only)	Passed	1 piece(s) 5 1/2" x 21" 24F-V4 DF Glulam					
1-4	Passed	1 piece(s) 6 x 12 DF No.2					
1-5	Passed	1 piece(s) 6 x 8 DF No.2					
1-6	Passed	1 piece(s) 4 x 8 HF No.2					
1-7	Passed	1 piece(s) 4 x 8 HF No.2					
1-8	Passed	1 piece(s) 6 x 12 DF No.2					
1-9	Passed	1 piece(s) 4 x 10 HF No.2					
1-10	Passed	1 piece(s) 4 x 8 HF No.2					
1-11	Passed	1 piece(s) 4 x 8 HF No.2					
1-12	Passed	1 piece(s) 4 x 8 HF No.2					
1-13	Passed	1 piece(s) 4 x 8 HF No.2					
Crawlspace Framing							
Member Name	Results	Current Solution	Comments				
0-1	Passed	1 piece(s) 4 x 12 HF No.2					
0-2	Passed	1 piece(s) 4 x 12 HF No.2					
J1	Passed	1 piece(s) 2 x 12 HF No.2 @ 16" OC					


Job Notes

Roof Framing, 1-1 (For Reactions Only) 1 piece(s) 3 1/2" x 11 7/8" 1.55E TimberStrand® LSL

Sloped Length: 14' 7 7/8"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs) 895 @ 14' 1 11/16" 4725 (1.50") Passed (19%) 1.0 D + 1.0 S (Alt Spans) Shear (lbs) 673 @ 13' 2" 9878 Passed (7%) 1.15 1.0 D + 1.0 S (Alt Spans) Moment (Ft-lbs) 1933 @ 9' 5 1/4" 18346 Passed (11%) 1.15 1.0 D + 1.0 S (Alt Spans) Live Load Defl. (in) 0.037 @ 8' 9 3/8' 0.567 Passed (L/999+) 1.0 D + 1.0 S (Alt Spans) Total Load Defl. (in) 0.064 @ 8' 9 3/8" 0.756 Passed (L/999+) 1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 2.12/12

Member Length : 14' 6 7/16"

• Deflection criteria: LL (L/240) and TL (L/180).

• Overhang deflection criteria: LL (2L/240) and TL (2L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Beveled Plate - SPF	3.50"	3.50"	1.50"	343	380	723	Blocking
2 - Hanger on 11 7/8" SPF beam	3.50"	Hanger ¹	1.50"	370	525	895	See note 1

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	14' 4" o/c					
Bottom Edge (Lu)	14' 4" o/c					

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie								
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories		
2 - Face Mount Hanger	LSSR410Z	1.88"	N/A	22-16dx2.5	18-16dx2.5			
Defende werde de stand weter and bestmust								

Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 14' 1 11/16"	N/A	13.0		
1 - Tapered (PLF)	0 to 2' 9 15/16"	N/A	0.0 to 43.1	0.0 to 70.7	Generated from Roof Geometry
2 - Tapered (PLF)	2' 9 15/16" to 14' 1 11/16"	N/A	0.0 to 80.7	0.0 to 141.4	Generated from Roof Geometry

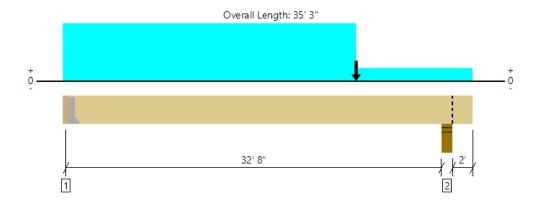
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

 ForteWEB Software Operator
 Job Notes

 Connor Kelly
 JHP Engineering


 (253) 220-0848
 connor@dhpengineering.com

3/2/2022 12:50:59 AM UTC ForteWEB v3.2, Engine: V8.2.0.17, Data: V8.1.0.16 File Name: 22.017 Mak Remodel Page 2 / 18

Roof Framing, 1-2 (For Reactions Only) 1 piece(s) 5 1/2" x 16 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3391 @ 3"	5363 (1.50")	Passed (63%)		1.0 D + 1.0 S (Alt Spans)
Shear (lbs)	3113 @ 1' 7 1/2"	18437	Passed (17%)	1.15	1.0 D + 1.0 S (Alt Spans)
Pos Moment (Ft-Ibs)	28441 @ 17' 1/4"	52813	Passed (54%)	1.15	1.0 D + 1.0 S (Alt Spans)
Neg Moment (Ft-Ibs)	-154 @ 33' 1/4"	44245	Passed (0%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.862 @ 16' 8 3/16"	1.092	Passed (L/456)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	1.484 @ 16' 8 7/16"	1.639	Passed (L/265)		1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

Overhang deflection criteria: LL (2L/360) and TL (2L/240). Upward deflection on right cantilever exceeds overhang deflection criteria.

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 0.92 that was calculated using length L = 32' 8 3/4".

• Critical negative moment adjusted by a volume factor of 1.00 that was calculated using length L = 2' 3 3/8".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads t	o Supports		
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Hanger on 16 1/2" HF beam	3.00"	Hanger ¹	1.50"	1425	2012	3437	See note 1
2 - Stud wall - HF	5.50"	5.50"	1.50"	1409	1747	3156	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	35' o/c					
Bottom Edge (Lu) 35' o/c						
Maximum allowable bracing intervals based on applied load						

Maximum allowable bracing intervals based on applied load.

Support Model Seat Length Top Fasteners Face Fasteners Member Fasteners Accessories	Connector: Simpson Strong-T	ie					
	Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger HU614 2.50" N/A 24-16d 12-16d	1 - Face Mount Hanger	HU614	2.50"	N/A	24-16d	12-16d	

//eyerhaeuser

· Refer to manufacturer notes and instructions for proper installation and use of all connectors.

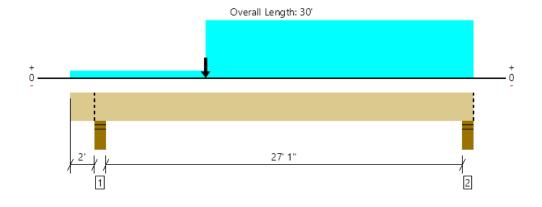
Vertical Loads	Leastion (Cide)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
Vertical Loads	Location (Side)	mbatary wath	(0.70)	(1.15)	comments
0 - Self Weight (PLF)	3" to 35' 3"	N/A	22.1		
1 - Uniform (PSF)	0 to 35' 3" (Front)	1'	15.0	25.0	Default Load
2 - Point (Ib)	25' 1" (Back)	N/A	370		Linked from: 1-1 (For Reactions Only), Support 2
3 - Uniform (PSF)	0 to 25' 1" (Back)	3' 9"	12.4	25.0	

ForteWEB Software Operator	Job Notes	
Connor Kelly DHP Engineering (253) 220-0848 connor@dhpengineering.com		w

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer **Page** wild **2** r framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator Connor Kelly DHP Engineering (253) 220-0848 connor@dhpengineering.com Job Notes

3/2/2022 12:50:59 AM UTC ForteWEB v3.2, Engine: V8.2.0.17, Data: V8.1.0.16 File Name: 22.017 Mak Remodel Page 4 / 18

Roof Framing, 1-3 (For Reactions Only) 1 piece(s) 5 1/2" x 21" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	9791 @ 29' 8"	12251 (5.50")	Passed (80%)		1.0 D + 1.0 S (Alt Spans)
Shear (lbs)	8306 @ 27' 9 1/2"	23466	Passed (35%)	1.15	1.0 D + 1.0 S (Alt Spans)
Pos Moment (Ft-lbs)	68053 @ 15' 5 1/4"	85003	Passed (80%)	1.15	1.0 D + 1.0 S (Alt Spans)
Neg Moment (Ft-Ibs)	-269 @ 2' 2 3/4"	71670	Passed (0%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.753 @ 15' 11 3/16"	0.915	Passed (L/437)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	1.201 @ 15' 10 11/16"	1.372	Passed (L/274)		1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

• Overhang deflection criteria: LL (2L/360) and TL (2L/240). Upward deflection on left cantilever exceeds overhang deflection criteria.

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 0.91 that was calculated using length L = 27' 4 15/16".

• Critical negative moment adjusted by a volume factor of 1.00 that was calculated using length L = 2' 3 3/16".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

· Applicable calculations are based on NDS.

	Bearing Length			Loads t	o Supports		
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Stud wall - HF	5.50"	5.50"	3.65"	3213	4917	8130	Blocking
2 - Stud wall - HF	5.50"	5.50"	4.40"	3559	6232	9791	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	28' o/c						
Bottom Edge (Lu)	30' o/c						

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 30'	N/A	28.1		
1 - Uniform (PSF)	0 to 30' (Front)	1'	15.0	25.0	Default Load
2 - Uniform (PSF)	10' 1" to 30' (Back)	16' 4"	12.0	25.0	
3 - Uniform (PSF)	0 to 10' 1" (Front)	1'	15.0	25.0	Default Load
4 - Point (lb)	10' 1" (Back)	N/A	1425	2012	Linked from: 1-2 (For Reactions Only), Support 1

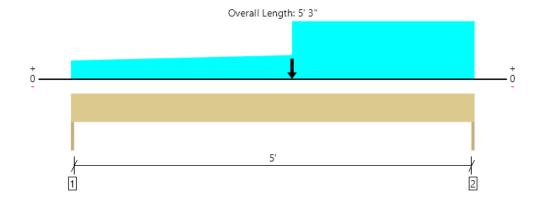
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

 ForteWEB Software Operator
 Job Notes

 Connor Kelly
 Job Notes


 DHP Engineering
 (253) 220-0848

 connor@dhpengineering.com
 Image: Connor@dhpengineering.com

Roof Framing, 1-4 1 piece(s) 6 x 12 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3169 @ 5' 3"	5156 (1.50")	Passed (61%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	2357 @ 4' 2"	8244	Passed (29%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	5413 @ 2' 10 1/2"	10166	Passed (53%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.014 @ 2' 8 7/16"	0.175	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.025 @ 2' 8 5/16"	0.262	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• Lumber grading provisions must be extended over the length of the member per NDS 4.2.5.5.

• Applicable calculations are based on NDS.

	Bearing Length			L	oads to Supp			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Total	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	955	425	1037	2417	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	1370	170	1799	3339	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 3" o/c	
Bottom Edge (Lu)	5' 3" o/c	
Bottom Edge (Lu)	5' 3" o/c	

•Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 5' 3"	N/A	16.0			
1 - Tapered (PSF)	0 to 2' 10 1/2"	4' 6" to 5' 10"	12.0	40.0	-	Default Load
2 - Point (lb)	2' 10 1/2"	N/A	1409	-	1747	Linked from: 1-2 (For Reactions Only), Support 2
3 - Uniform (PSF)	2' 10 1/2" to 5' 3"	18' 4"	15.0	-	25.0	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Connor Kelly	
DHP Engineering	
(253) 220-0848	
connor@dhpengineering.com	

Roof Framing, 1-5 1 piece(s) 6 x 8 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	7789 @ 1 1/2"	10313 (3.00")	Passed (76%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1452 @ 10 1/2"	5376	Passed (27%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	2222 @ 5"	3706	Passed (60%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.005 @ 1' 4 11/16"	0.092	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.009 @ 1' 4 11/16"	0.138	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - HF	3.00"	3.00"	2.27"	3077	4711	7788	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	478	726	1204	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	2' 11" o/c	
Bottom Edge (Lu)	2' 11" o/c	

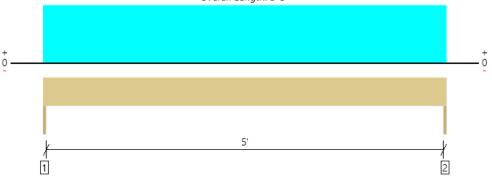
•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 2' 10 1/2"	N/A	10.4		
1 - Uniform (PSF)	0 to 5"	15' 6"	15.0	25.0	
2 - Point (Ib)	5"	N/A	3213	4917	Linked from: 1-3 (For Reactions Only), Support 1
3 - Uniform (PSF)	5" to 2' 10 1/2"	5' 10"	15.0	25.0	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job N
Connor Kelly	
DHP Engineering	
(253) 220-0848	
connor@dhnengineering.com	



Roof Framing, 1-6 1 piece(s) 4 x 8 HF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

					
Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	630 @ 0	2126 (1.50")	Passed (30%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	455 @ 8 3/4"	2918	Passed (16%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	826 @ 2' 7 1/2"	3247	Passed (25%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.017 @ 2' 7 1/2"	0.175	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.028 @ 2' 7 1/2"	0.262	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	247	383	630	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	247	383	630	None

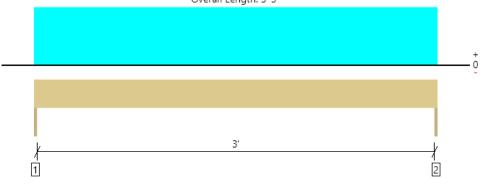
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 3" o/c	
Bottom Edge (Lu)	5' 3" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 5' 3"	N/A	6.4		
1 - Uniform (PSF)	0 to 5' 3"	5' 10"	15.0	25.0	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes
Connor Kelly DHP Engineering (253) 220-0848 connor@dhpengineering.com	

Roof Framing, 1-7 1 piece(s) 4 x 8 HF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1202 @ 0	2126 (1.50")	Passed (57%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	663 @ 8 3/4"	2918	Passed (23%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	977 @ 1' 7 1/2"	3247	Passed (30%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.008 @ 1' 7 1/2"	0.108	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.013 @ 1' 7 1/2"	0.162	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

0

Applicable calculations are based on NDS.

	Bearing Length			Loads t	o Supports (
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	457	745	1202	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	457	745	1202	None

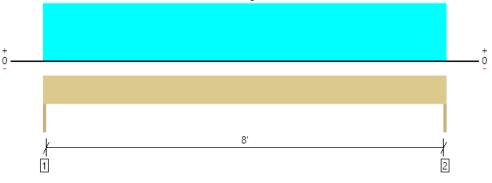
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 3" o/c	
Bottom Edge (Lu)	3' 3" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 3' 3"	N/A	6.4		
1 - Uniform (PSF)	0 to 3' 3"	18' 4"	15.0	25.0	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes
Connor Kelly DHP Engineering (253) 220-0848 connor@dhpengineering.com	

Roof Framing, 1-8 1 piece(s) 6 x 12 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3091 @ 0	5156 (1.50")	Passed (60%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	2279 @ 1' 1"	8244	Passed (28%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	6375 @ 4' 1 1/2"	10166	Passed (63%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.053 @ 4' 1 1/2"	0.275	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.086 @ 4' 1 1/2"	0.412	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• Lumber grading provisions must be extended over the length of the member per NDS 4.2.5.5.

• Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	1200	1891	3091	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	1200	1891	3091	None

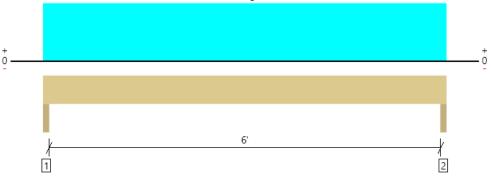
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 3" o/c	
Bottom Edge (Lu)	8' 3" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 8' 3"	N/A	16.0		
1 - Uniform (PSF)	0 to 8' 3"	18' 4"	15.0	25.0	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes
Connor Kelly DHP Engineering (253) 220-0848 connor@dhpengineering.com	

Roof Framing, 1-9 1 piece(s) 4 x 10 HF No.2

Overall Length: 6' 6"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2410 @ 1 1/2"	4253 (3.00")	Passed (57%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1653 @ 1' 1/4"	3723	Passed (44%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	3621 @ 3' 3"	4879	Passed (74%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.052 @ 3' 3"	0.208	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.085 @ 3' 3"	0.313	Passed (L/884)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - HF	3.00"	3.00"	1.70"	920	1490	2410	None
2 - Trimmer - HF	3.00"	3.00"	1.70"	920	1490	2410	None

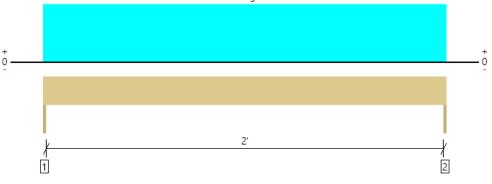
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' 6" o/c	
Bottom Edge (Lu)	6' 6" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 6' 6"	N/A	8.2		
1 - Uniform (PSF)	0 to 6' 6"	18' 4"	15.0	25.0	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes
Connor Kelly DHP Engineering (253) 220-0848 connor@dhpengineering.com	

Roof Framing, 1-10 1 piece(s) 4 x 8 HF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	877 @ 0	2126 (1.50")	Passed (41%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	309 @ 8 3/4"	2918	Passed (11%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	493 @ 1' 1 1/2"	3247	Passed (15%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.002 @ 1' 1 1/2"	0.075	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.003 @ 1' 1 1/2"	0.112	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	333	544	877	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	333	544	877	None

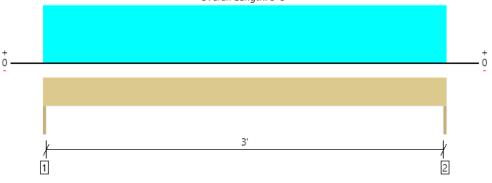
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	2' 3" o/c	
Bottom Edge (Lu)	2' 3" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 2' 3"	N/A	6.4		
1 - Uniform (PSF)	0 to 2' 3"	19' 4"	15.0	25.0	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes
Connor Kelly DHP Engineering (253) 220-0848 connor@dhpengineering.com	

Roof Framing, 1-11 1 piece(s) 4 x 8 HF No.2

Overall Length: 3' 3"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1267 @ 0	2126 (1.50")	Passed (60%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	699 @ 8 3/4"	2918	Passed (24%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	1030 @ 1' 7 1/2"	3247	Passed (32%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.008 @ 1' 7 1/2"	0.108	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.014 @ 1' 7 1/2"	0.162	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	482	785	1267	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	482	785	1267	None

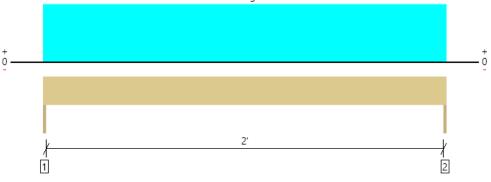
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 3" o/c	
Bottom Edge (Lu)	3' 3" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 3' 3"	N/A	6.4		
1 - Uniform (PSF)	0 to 3' 3"	19' 4"	15.0	25.0	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes
Connor Kelly DHP Engineering (253) 220-0848 connor@dhpengineering.com	

Roof Framing, 1-12 1 piece(s) 4 x 8 HF No.2

Overall Length: 2' 3"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	877 @ 0	2126 (1.50")	Passed (41%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	309 @ 8 3/4"	2918	Passed (11%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	493 @ 1' 1 1/2"	3247	Passed (15%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.002 @ 1' 1 1/2"	0.075	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.003 @ 1' 1 1/2"	0.112	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

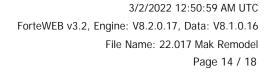
• Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	333	544	877	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	333	544	877	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	2' 3" o/c	
Bottom Edge (Lu)	2' 3" o/c	

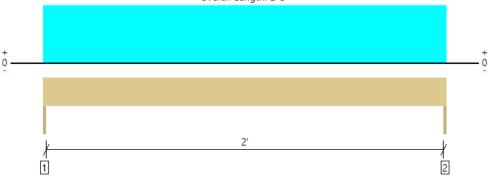
•Maximum allowable bracing intervals based on applied load.


			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 2' 3"	N/A	6.4		
1 - Uniform (PSF)	0 to 2' 3"	19' 4"	15.0	25.0	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Weyerhaeuser


ForteWEB Software Operator	Job Notes
Connor Kelly DHP Engineering (253) 220-0848 connor@dhpengineering.com	

Roof Framing, 1-13 1 piece(s) 4 x 8 HF No.2

Overall Length: 2' 3"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	705 @ 0	2126 (1.50")	Passed (33%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	248 @ 8 3/4"	2918	Passed (8%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	396 @ 1' 1 1/2"	3247	Passed (12%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.002 @ 1' 1 1/2"	0.075	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.002 @ 1' 1 1/2"	0.112	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	269	436	705	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	269	436	705	None

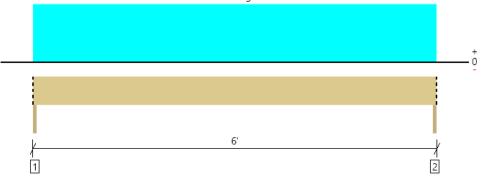
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	2' 3" o/c	
Bottom Edge (Lu)	2' 3" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 2' 3"	N/A	6.4		
1 - Uniform (PSF)	0 to 2' 3"	15' 6"	15.0	25.0	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes
Connor Kelly DHP Engineering (253) 220-0848 connor@dhpengineering.com	

Crawlspace Framing, 0-1 1 piece(s) 4 x 12 HF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2136 @ 1/4"	2481 (1.75")	Passed (86%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1365 @ 1' 1"	3938	Passed (35%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	3160 @ 3'	5752	Passed (55%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.028 @ 3'	0.199	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.037 @ 3'	0.298	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

0

Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Column - HF	1.75"	1.75"	1.51"	516	1620	2136	Blocking
2 - Column - HF	1.75"	1.75"	1.51"	516	1620	2136	Blocking
Blocking Panels are assumed to carry no load	Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.						

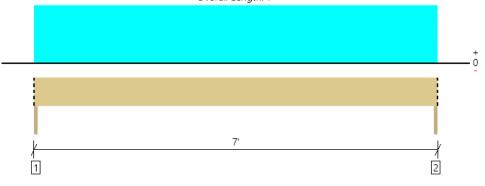
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' o/c	
Bottom Edge (Lu)	6' o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 6'	N/A	10.0		
1 - Uniform (PSF)	0 to 6' (Top)	13' 6"	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes
Connor Kelly DHP Engineering (253) 220-0848 connor@dhpengineering.com	

Crawlspace Framing, 0-2 1 piece(s) 4 x 12 HF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1855 @ 1/4"	2481 (1.75")	Passed (75%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1281 @ 1' 1"	3938	Passed (33%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	3208 @ 3' 6"	5752	Passed (56%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.039 @ 3' 6"	0.232	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.052 @ 3' 6"	0.348	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

0

Applicable calculations are based on NDS.

	Bearing Length		Loads t	o Supports (
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Column - HF	1.75"	1.75"	1.50"	455	1400	1855	Blocking
2 - Column - HF	1.75"	1.75"	1.50"	455	1400	1855	Blocking
Blocking Panels are assumed to carry no load	Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.						

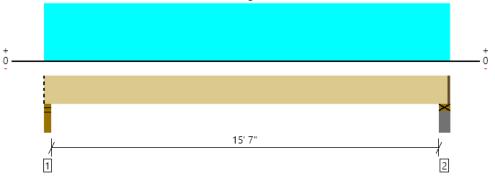
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	7' o/c	
Bottom Edge (Lu)	7' o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 7'	N/A	10.0		
1 - Uniform (PSF)	0 to 7' (Top)	10'	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes
Connor Kelly DHP Engineering (253) 220-0848 connor@dhpengineering.com	

Crawlspace Framing, J1 1 piece(s) 2 x 12 HF No.2 @ 16" OC

Overall Length: 16' 4"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
0				LDI	. ,
Member Reaction (lbs)	560 @ 2 1/2"	2126 (3.50")	Passed (26%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	475 @ 1' 2 3/4"	1688	Passed (28%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2150 @ 8' 1"	2577	Passed (83%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.319 @ 8' 1"	0.394	Passed (L/592)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.415 @ 8' 1"	0.788	Passed (L/456)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

• Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads t	o Supports (
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - HF	3.50"	3.50"	1.50"	129	431	560	Blocking
2 - Plate on concrete - HF	5.50"	4.25"	1.50"	132	440	572	1 1/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' 6" o/c	
Bottom Edge (Lu)	16' 3" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 16' 4"	16"	12.0	40.0	Default Load

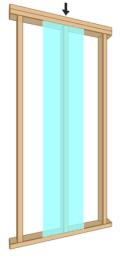
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Connor Kelly	
DHP Engineering	
(253) 220-0848	
connor@dhnengineering.com	

3/2/2022 12:50:59 AM UTC ForteWEB v3.2, Engine: V8.2.0.17, Data: V8.1.0.16 File Name: 22.017 Mak Remodel Page 18 / 18



Studs/Posts, Typical Exterior Studs 1 piece(s) 2 x 6 HF No.2 @ 16" OC

Wall Height: 10'

Member Height: 9' 7 1/2"

O. C. Spacing: 16.00"

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	21	50	Passed (42%)		
Compression (lbs)	1520	6189	Passed (25%)	1.15	1.0 D + 1.0 S
Plate Bearing (lbs)	1520	4177	Passed (36%)		1.0 D + 1.0 S
Lateral Reaction (lbs)	162			1.60	1.0 D + 0.6 W
Lateral Shear (lbs)	147	1320	Passed (11%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	390 @ mid-span	1264	Passed (31%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	0.18 @ mid-span	0.96	Passed (L/625)		1.0 D + 0.6 W
Bending/Compression	0.42	1	Passed (42%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 S

· Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

· A bearing area factor of 1.25 has been applied to base plate bearing capacity.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Supports	Туре	Material	System : Wall
Тор	Dbl 2X	Hem Fir	Member Type : Stud Building Code : IBC 2015
Base	2X	Hem Fir	Design Methodology : ASE
Max Upbracod Longt	h	Commonts	

Drawing is Conceptual

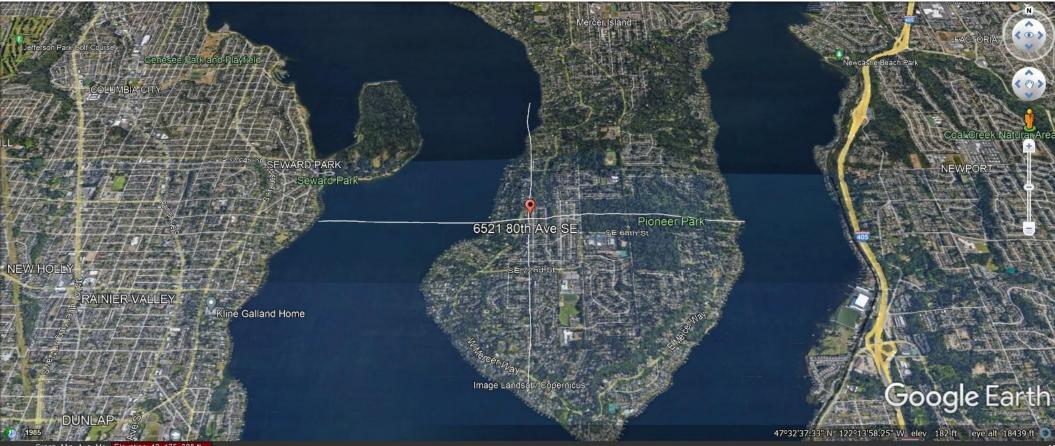
Lateral Connections							
Supports Connector		Type/Model	Quantity	Connector Nailing			
Тор	Nails	8d x 2.5" Box (Toe)	2	N/A			
Base	Nails	8d x 2.5" Box (Toe)	2	N/A			

• Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

		Dead	Snow	
Vertical Load	Spacing	(0.90)	(1.15)	Comments
1 - Point (Ib)	N/A	570	950	Default Load

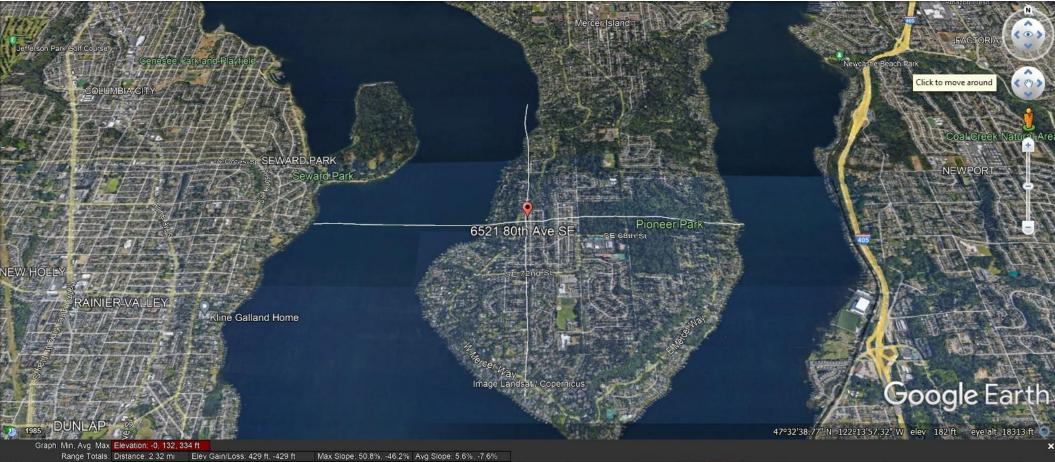
			Wind	
Lateral Load	Location	Spacing	(1.60)	Comments
1 - Uniform (PSF)	Full Length	16.00"	42.1	

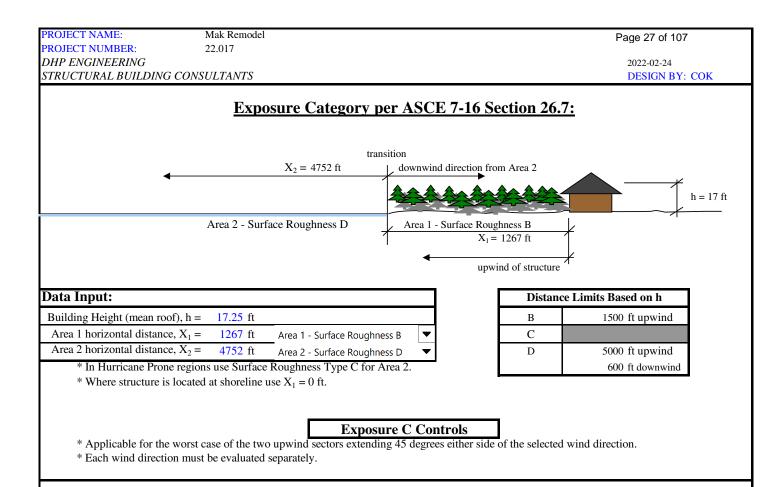
IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.


1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library


ForteWEB Software Operator	Job Notes
Connor Kelly DHP Engineering (253) 220-0848 connor@dhpengineering.com	



Graph: Min, Avg, Max Elevation: 12, 175, 328 ft

Exposure per ASCE7-16 Section 26.7

26.7 EXPOSURE

For each wind direction considered, the upwind exposure shall be based on ground surface roughness that is determined from natural topography, vegetation, and constructed facilities.

26.7.1 Wind Directions and Sectors. For each selected wind direction at which the wind loads are to be determined, the exposure of the building or structure shall be determined for the two upwind sectors extending 45° on either side of the selected wind direction. The exposure in these two sectors shall be determined in accordance with Sections 26.7.2 and 26.7.3, and the exposure the use of which would result in the highest wind loads shall be used to represent the winds from that direction.

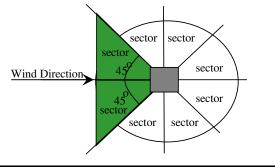
26.7.2 Surface Roughness Categories. A ground surface roughness within each 45° sector shall be determined for a distance upwind of the site, as defined in Section 26.7.3, from the categories defined in the following text, for the purpose of assigning an exposure category as defined in Section 26.7.3.

Surface Roughness B: Urban and suburban areas, wooded areas, or other terrain with numerous, closely spaced obstructions that have the size of single-family dwellings or larger.

Surface Roughness C: Open terrain with scattered obstructions that have heights generally less than 30 ft (9.1 m). This category includes flat, open country and grasslands.

Surface Roughness D: Flat, unobstructed areas and water surfaces. This category includes smooth mud flats, salt flats, and unbroken ice.

26.7.3 Exposure Categories.

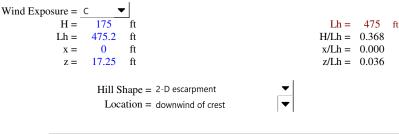

Exposure B: For buildings or other structures with a mean roof height less than or equal to 30 ft (9.1 m), Exposure B shall apply where the ground surface roughness, as defined by Surface Roughness B, prevails in the upwind direction for a distance greater than 1,500 ft (457 m). For buildings or other structures with a mean roof height greater than 30 ft (9.1 m), Exposure B shall apply where Surface Roughness B prevails in the upwind direction for a distance greater than 2,600 ft (792 m) or 20 times the height of the building or structure, whichever is greater.

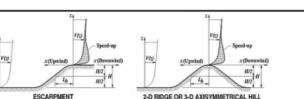
Exposure C: Exposure C shall apply for all cases where Exposure B or D does not apply.

Exposure D: Exposure D shall apply where the ground surface roughness, as defined by Surface Roughness D, prevails in the upwind direction for a distance greater than 5,000 ft (1,524 m) or 20 times the building or structure height, whichever is greater. Exposure D shall also apply where the ground surface roughness immediately upwind of the site is B or C, and the site is within a distance of 600 ft (183 m) or 20 times the building or structure height, whichever is greater, from an Exposure D condition as defined in the previous sentence.

For a site located in the transition zone between exposure categories, the category resulting in the largest wind forces shall be used.

EXCEPTION: An intermediate exposure between the preceding categories is permitted in a transition zone, provided that it is determined by a rational analysis method defined in the recognized literature.


Page 28 of 107


2022-02-24 DESIGN BY: COK

Topographic Factor, Kzt - per Section 26.8.1, ASCE 7-16: Figure 26.8-1

Verify Applicability of Conditions per Section 26.8.1 (check all boxes that apply):

- Abrupt change is isolated and unobstructed upwind by similar topographic features of comparable height for 100H or 2 miles, whichever is less; 1. \checkmark
- 2. \checkmark The hill, ridge, or escarp. protrudes above the height of upwind terrain features within a 2-mile radius in any quadrant by a factor of two or more;
- 3. \checkmark Structure is located in upper half of hill or ridge or near the crest of an escarpment;
- \checkmark 4. H/Lh is greater than or equal to 0.2;
- H is greater than or equal to 15ft for Exp C & D; and 60ft for Exp B. 5. 🗸
 - All boxes checked, Kzt shall be included in design.

Topographic Multipliers for Exposure C^{a,b,c}

	K, Multiplier		K, Multiplier	K ₂ Mak	äpiler			K ₂ Multiplier		
H/L _h	2D Ridge	2D Escarpment	3D Asisym- metrical Hill	x/L _k	2D Escarpment	All Other Cases	z/L_{μ}	2D Ridge	20 Escarpment	3D Axisym- metrical Hill
0.20	0.29	0.17	0.21	0.00	1.00	1.00	0:00	1.00	1.00	1.00
0.25	0.36	0.21	0.26	0.50	0.88	0.67	0.10	0.74	0.78	0.67
0.30	0.43	0.26	0.32	1.00	0.75	0.33	0.20	0.55	0.61	0.45
0.35	0.51	0.30	0.37	1.50	0.63	0.00	0.30	0.41	0.47	0.30
0.40	0.58	0.34	0.42	2.00	0.50	0.00	0.40	0.30	0.37	0.20
0.45	0.65	0.38	0.47	2.50	0.38	0.00	0.50	0.22	0.29	0.14
0.50	0.72	0.43	0.53	3.00	0.25	0.00	0.60	0.17	0.22	0.09
				3.50	0.13	0.00	0.70	0.12	0.17	0.06
				4.00	0.00	0.00	0.80	0.09	0.14	0.04
							0.90	0.07	0.11	0.03
							1.00	0.05	0.08	0.02
							0.50	0.01	0.02	0.00
							2.00	0.00	0.00	0.00

For values of H/L_6 , x/L_8 , and z/L_6 other than those shown, linear interpolation is permitted. For $H/L_6 > 0.5$, assume that $H/L_6 = 0.5$ for evaluating K_1 and substitute 2H for L_6 for evaluating K_2 and K_3 . Multipliers are based on the assumption that utima approaches the hill or exargument along the direction of maxim

Notation

Notation
H = Height of hill or escarpment relative to the upwind terrain, in ft (m).
K_1 = Factor to account for shape of topographic feature and maximum speed-up effect.
K_2 = Factor to account for reduction in speed-up with distance upwind or downwind of crest.
K_3 = Factor to account for reduction in speed-up with height above local terrain.
L_k = Distance upwind of crest to where the difference in ground elevation is half the height of hill or escarpment, in ft (m).
x = Distance (upwind or downwind) from the crest to the site of the building or other structure, in ft (m).
z = Height above ground surface at the site of the building or other structure, in ft (m).
$\mu = Horizontal$ attenuation factor.
- Unight attenuation forten

Diagrams

γ = Height attenuation factor. Equations $K_{3'} = (1 + K_1 K_2 K_3)^2$ K_1 = determined from table below $K_2 = (1 - |x|/\mu L_h)$ $K_{2} = e^{-\gamma z}$ Parameters for Speed-Up over Hills and Escarpments $\kappa_1/(H/L_h)$ Exp HII Shape в c D nd of Crest nd of Crest Upui De 1.30 0.75 0.95 1.45 0.85 1.05 2D ridges (or valleys with negative H in $K_1/(H/L_h)$ 1.55 1.5 1.5 1.5 1.5 2.5 0.95 2D escarptments 3D axisymmetrical hill 1.5

FIGURE 26.8-1 Topographic Factor, Kz

Equations

 $K_{zt} = (1 + K_1 K_2 K_3)^2$ K_1 = determined from table below $K_2 = (1 - |x|/\mu L_h)$ $K_3 = e^{-yz/L_h}$

$K_1 / (H/Lh) =$	0.85
$\gamma =$	2.5
μ=	4.0
$K_1 =$	0.313
$K_2 =$	1.000
$K_3 =$	0.913

$$Kzt = (1 + K_1 K_2 K_3)^2 = 1.65$$

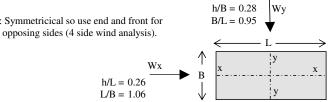
2022-02-24 DESIGN BY: COK

WIND LOADS per ASCE 7-16: 98 MPH, EXP 'C' with 17.25 ft MEAN ROOF HEIGHT

MAIN WIND-FORCE RESISTING SYSTEMS (Directional)

Section 27.3 - BUILDINGS OF ALL HEIGHTS

See section 27.3.5 for Design Wind Load Cases, defined in Figure 27.3-8


BUILDING EXPOSURE	С	(P
WIND SPEED	98	Μ
GROUND ELEVATION FACTOR, Ke	1.00	TA
TOPOGRAPHIC FACTOR, Kzt	1.65	FI
WIND DIRECTION FACTOR, Kd	0.85	TA
MEAN ROOF HEIGHT, h	17.25	FI
BUILDING WIDTH, B	62	FI
BUILDING LENGTH, L	65.5	FI
3 :12 ROOF SLOPE	14.0	de

Per Jurisdiction) APH (Per Jurisdiction) ABLE 26.9-1 IGURE 26.8-1 ABLE 26.6-1 т т т

Note: Symmetricical so use end and front for

h/L = 0.26

L/B = 1.06

plan view

legrees (0) -Rigid Structure, freq >= 1; G=0.85 Kh = 0.87 TABLE 26.10-1 PRESSURE COEFFICIENTS G Ср WINWARD 0.85 0.80 PER sect 27.3.1, FIG 27.3-1 $qh = 0.00256KzKztKdKe(V)^2 =$ 30.1 PSF (Eq. 26.10-1) qh(GCpi) INTERNAL PRESSURE LEEWARD 0.85 -0.49 -0 50 PER sect 27.3.1, FIG 27.3-1 POSITIVE 5.43 PSF 0.85 -0.70 PER sect 27.3.1, FIG 27.3-1 SIDE -5.43 PSF ▼ Internal Pressure Coefficient, Table 26.13-1 NEGATIVE Partially Open Buildings: GCpi = +0.18, -0.18

WA	LL LOA	ADS	qzGCp		qhGCp		WALL P	RESSURES (P	SF): P = qGCp	- qh(GCpi)	OVERALL BUILDING		
height		windward	1	leev	vard	side	windward leeward side wall		LOADS TO V	WALLS (PSF)			
z	Kz	qz	(+)	L/B (Wx)	B/L (Wy)			L/B (Wx)	B/L (Wy)		qzGCp	-qhGCp	
(ft)		(PSF)	(PSF)	(PSF)	(PSF)	(PSF)	(- int : +int)	(+ int : -int)	(+ int : -int)	(+ int : -int)	Wx	Wy	
30	0.98	33.9	23.0	-12.5	-12.8	-17.9	$285 \cdot 176$	-17971	-182.74	-23.4 : -12.5	35.6	35.8	
20	0.90	31.1	21.1	-12.5	-12.8	-17.9				-23.4 : -12.5	33.7	34.0	
10	0.85	29.3	19.9	-12.5	-12.8	-17.9				-23.4 : -12.5	32.4	32.7	

*Note that wind pressures are service level and to be adjusted as required by ASCE 7-16 sections 2.3 or 2.4 for LRFD or ASD respectively

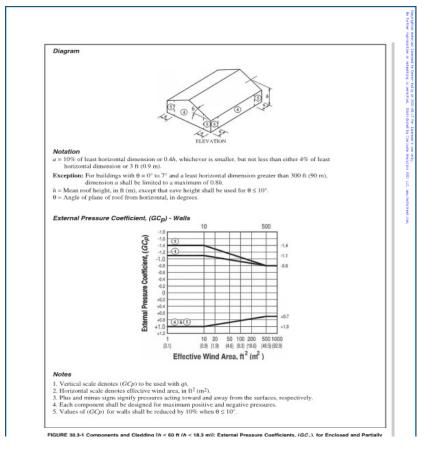
	Overa	ll Externa	l Pressure			P = qGG	Cp - qh(GCp	oi) (PSF)				
ROOF LOADS	wind	lward	leeward		qhGCpi	windward(-)	windward(+)	leeward	TOTAL HO	RIZONTAL	TOTAL VE	RT UPLIFT
	(-)	(+)	(-)		(PSF)	w/ internal	w/ internal	w/ internal	ROOF COM	IPNT (PSF)	ROOF COM	IPNT (PSF)
Normal to Ridge Cp	-0.55	-0.04	-0.46	(+) internal =	5.43	-19.5	-6.5	-17.3	windward(-)	windward(+)	windward	leeward
Wx (for $\theta \ge 10$) qhGC	-14.1	-1.1	-11.9	(-) internal =	-5.43	-8.6	4.3	-6.5	-0.5	2.6	-18.9	-16.8
Normal to Ridge Cp	-0.56	-0.05	-0.47	(+) internal =	5.43	-19.8	-6.7	-17.4	windward(-)	windward(+)	windward	leeward
Wy (for $\theta \ge 10$) qhGC	-14.4	-1.3	-11.9	(-) internal =	-5.43	-9.0	4.1	-6.5	-0.6	2.6	-19.2	-16.8
Normal to Ridge for $\theta < 10$)	Horizont	al distance	from windwa	urd edge	F	P = qGCp - c	h(GCpi) (PS	SF)			
& Parallel to Ridge for all	range	0'-8.6'	8.6'-17.3'	17.3'-34.5'	> 34.5'	0'-8.6'	8.6'-17.3'	17.3'-34.5'	> 34.5'			
	Ср	-0.90	-0.90	-0.50	-0.30	-28.5	-28.5	-18.2	-13.1	+ internal		
Wx (max load case)	qhGCp	-23.1	-23.1	-12.8	-7.7	-17.6	-17.6	-7.4	-2.3	- internal		
ridge along x-x		VERT	TCAL UPLIFT	ROOF COMP	ONENT (PSF)	-27.6	-27.6	-17.7	-12.7	+ internal		
	Ср	-0.90	-0.90	-0.50	-0.30	-28.5	-28.5	-18.2	-13.1	+ internal		
Wy (max load case)	qhGCp	-23.1	-23.1	-12.8	-7.7	-17.6	-17.6	-7.4	-2.3	- internal		
ridge along y-y		VERT	'ICAL UPLIFI	ROOF COMP	ONENT (PSF)	-27.6	-27.6	-17.7	-12.7	+ internal		
	Ср	-0.18	-0.18	-0.18	-0.18	-10.0	-10.0	-10.0	-10.0	+ internal		
Wx & Wy (min load case)			-4.6	-4.6	-4.6	0.8	0.8	0.8	0.8	- internal		
Roof Overhangs qhGCp 20.5 PSF at bottom surface of windward roof overhang (per section 27.3.3)												
Roof Parapets hp =	= 0.0	ft, top of p	arapet elevati	on	windwa	ard parapet =	43.9	PSF (Eq.27.3-3)	TOT HORIZ			
section 27.3.4 qp =	= 29.3	psf,	GCpn = +1.5	5, -1.0	leewa	ard parapet =	-29.3	PSF (Eq.27.3-3)	73.2 PSF			

2022-02-24 DESIGN BY COK

ULT WIND LOADS per ASCE 7-16: 98 MPH, EXP 'C' with 17.25 ft MEAN ROOF HEIGHT

WALL ELEMENTS & COMPONENTS (part 1)

Section 30.3 - BUILDINGS with h <= 60 ft


Page 30 of 107

						ROOF ANGLE, θ	14	degrees
BUILDING EXPOSURE	C	(Per Jurisdic	ction)			MEAN ROOF HEIGHT, h	17.25	FT
WIND SPEED (3-Second Gust)		MPH (Per J	urisdiction)	h/B =	0.3	LEAST BLDG WIDTH, B	62	FT
						dist 'a'	6.2	FT
Ke, GROUND ELEVATION FACTOR	1.00	TABLE 26.9	9-1			SPAN OF FRAMING ELEMENT	10	FT
Kd, WIND DIRECTION FACTOR	0.85	TABLE 26.6	5-1			TRIBUTARY SPACING/WIDTH	1.3333	FT
Kzt, TOPOGRAPHIC FACTOR	1.65	FIGURE 26	.8-1			(M)EMBER or (F)ASTENER	Μ	
Kz, VEL. PRES. EXP. COEF	0.87	TABLE 26.1	10-1			TRIBUTARY AREA	13.3	FT^2
qh=0.00256KzKztKdKe(V)^2	30.15 PSF (Eq. 26	.10-1)				EFFECTIVE WIDTH	3.33	FT
						EFFECTIVE WIND AREA	33.3	FT^2
	1	PRESSURE	COEFFICIE	NTS				
	GCp and GCpi	WALL	CORNER	Referen	ce	Full GCp values used		
	GCp INWARD	0.91	0.91	PER FIGURE 3	0.3-1			
	GCp OUTWARD	-1.01	-1.22	PER FIGURE 3	0.3-1			
Internal Pressure Coefficient, Table 26.13-1	Enclosed Buildings:	GCpi = +0.1	8, -0.18		-	-		

	Servi	ASD		
P=qh[GCp-GCpi]	TYPICAL WALL STUDS	CORNER STUDS [*]	TYP WALL	COR STUDS
INWARD PRESSURES	32.79 PSF	32.79 PSF	19.67 PSF	19.67 PSF
OUTWARD PRESSURES	-35.80 PSF	-42.06 PSF	-21.48 PSF	-25.24 PSF

* apply over distance 'a ' from corner

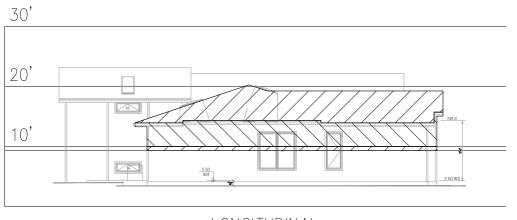
*Note that service wind pressures are to be adjusted as required by ASCE 7-16 sections 2.3 or 2.4 for LRFD or ASD respectively

ASCE Seismic Base Shear

Lic. # : KW-06004293

DESCRIPTION: Mak Remodel

Risk Category						Calculations per ASCE 7-16
Risk Category of Building or Other Structure : "I	" : All Buildin	gs and othe	r structur	es except tho	se listed as Category I, III, and IV	ASCE 7-16, Page 4, Table 1.5-1
Seismic Importance Factor =	1					ASCE 7-16, Page 5, Table 1.5-2
						ASCE 7-16 11.4.2
Max. Ground Motions, 5% Damping :			Latitude	=	47.544 deg Nor	h
S _S = 1.472 g, 0.2 sec respon	se		Longitud	e =	122.233 deg Wes	st
$S_1 = 0.5664 \text{ g}, 1.0 \text{ sec respon}$	se					
Site Class, Site Coeff. and Design Category						
Site Classification "D" : Shear Wave Velocity 600 to 1,200	ft/sec		=	D		ASCE 7-16 Table 20.3-1
Site Coefficients Fa & Fv		Fa	=	1.20		ASCE 7-16 Table 11.4-1 & 11.4-2
(using straight-line interpolation from table values)		Fv	=	1.77		
Maximum Considered Earthquake Acceleration	S _{MS} = F	a * Ss	=	1.766		ASCE 7-16 Eq. 11.4-1
	$S_{M1} = F$		=	1.000		ASCE 7-16 Eq. 11.4-2
Design Spectral Acceleration	S _{DS} = S	*2/3	=	1.178		ASCE 7-16 Eq. 11.4-3
	S _{D1} = S		=	0.667		ASCE 7-16 Eq. 11.4-4
Seismic Design Category			=	D		ASCE 7-16 Table 11.6-1 & -2
Resisting System						ASCE 7-16 Table 12.2-1
Basic Seismic Force Resisting System Bearing W	all Systems	welle choot	bodwky		ral panels rated for shear resistanc	•
Ŭ			g height L		rai pariels rateu fui sriear resistario	е.
	5.50 2.50		ory "A &		No Limit	
, , , , , , , , , , , , , , , , , , , ,	2.50 4.00	Categ	ory "C" L	imit:	No Limit	
	+.00		ory "D" L		Limit = 65	
NOTE! See ASCE 7-16 for all applicable footnotes.			ory "E" L ory "F" L		Limit = 65 Limit = 65	
Lateral Force Procedure						ASCE 7-16 Section 12.8.2
Equivalent Lateral Force Procedure						
The "Equivalent Lateral	Force Proc	edure" is b	eing us	ed according	g to the provisions of ASCE 7-16	<u>12.8</u>
Determine Building Period						Use ASCE 12.8-7

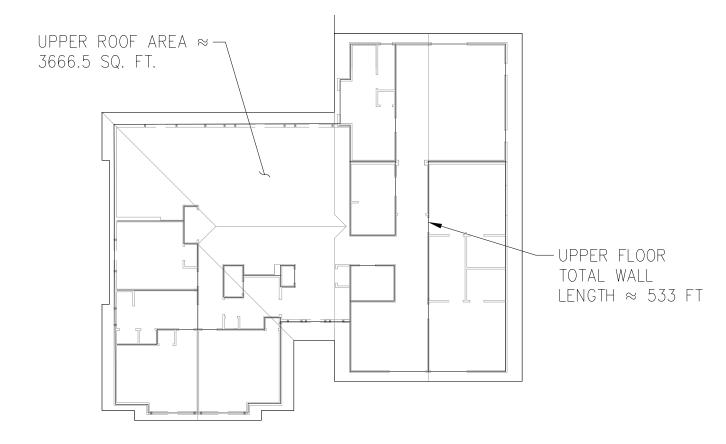

" Ct " value	=	0.020	" nn " : Height from t	base to highest level =	17.250 ft		
" x " value	=	0.75					
" Ta " Approxin	nate funde	mental period using	Eq. 12.8-7 :	Ta = Ct * (hn ^ x) =	0.169 sec		
"TL" : Long-period transition period per ASCE 7-16 Maps 22-14 -> 22-17					6.000 sec		
				Building Period " Ta " Calc	ulated from Approximate Method selected	=	0.169

" Cs " Response Coefficient					ASCE 7-1	16 Section 12.8.1.1
S _{DS} : Short Period Design Spectral Response		1.178	From Eq. 12.8-2, Preliminary Cs		=	0.181
" R " : Response Modification Factor =		6.50	From Eq. 12.8-3 & 12.8-4, Cs need not exceed		=	0.606
" I " : Seismic Importance Factor		1	From Eq. 12.8-5 & 12.8-6, Cs not be less than		=	0.052
		Cs : Se	eismic Response Coefficient =		=	0.1812
Seismic Base Shear					ASCE 7	-16 Section 12.8.1
Cs = 0.1812 from 12.8.1.1			W (see Sum Wi below) =	0.00 k		
		Se	eismic Base Shear V = Cs * W =	0.00 k		

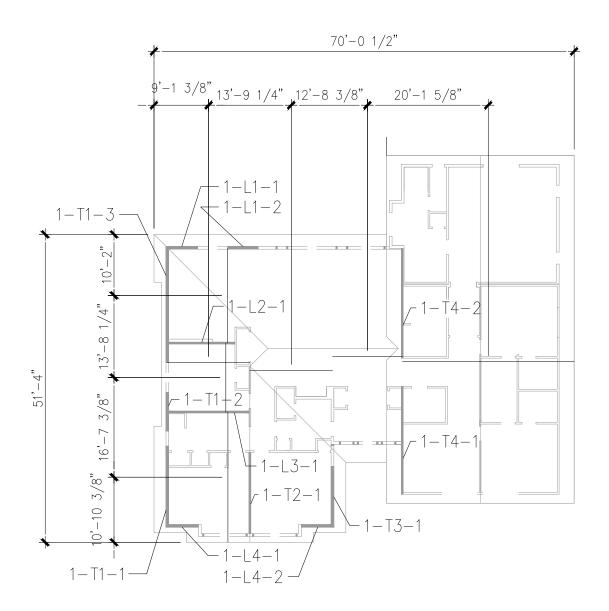
Project Title: Engineer: Project ID: Project Descr:

Printed: 24 FEB 2022, 3:35PM File: Seismic Coefficients.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.17 DHP ENGINEERING

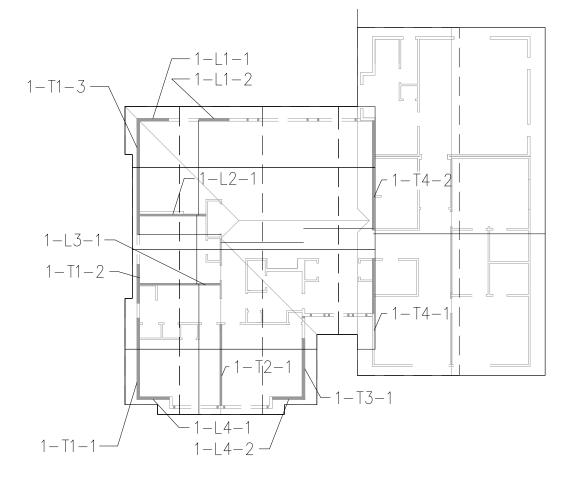
sec


LONGITUDINAL

<u>TRANSVERSE</u>


	LEVEL 1									
		LONGITUDINAL		TRANSVERSE						
ELEVATION	ROOF	20'	10'	ROOF	30'	20'	10'			
AREA	221.8 SQ. FT.	203.0 SQ. FT.	33.8 SQ. FT.	117.3 SQ. FT.	30.5 SQ. FT.	502.7 SQ. FT.	46.0 SQ. FT.			

PROJECT NO. : 22.017 DESIGNED BY : COK DRAWN BY : COK ISSUE DATE :	MAK REMOE MERCER ISLAND,		
DHP Engineering Structural Building Consultants	32008 32nd Ave S, Suite B Federal Way, WA 98001 (253) 220-0848	PREPARED FOR:	


ROOF PLAN

LEVEL 1		LONGITUDINAL							
SHEARWALL	1-L1	1-L2	1-L3	1-L4					
TRIBUTARY WIDTH	122.0	164.3	199.4	130.4					
TOTAL WIDTH	616.0								
	TRANSVERSE								
SHEARWALL	1-T1	1-T2	1-T3	1-T4					
TRIBUTARY WIDTH	109.4	165.2	152.4	241.6					
TOTAL WIDTH	840.5								

PROJECT NO. : 22.017 DESIGNED BY : COK DRAWN BY : COK ISSUE DATE :	MAK REMOI MERCER ISLAND,		
DHP Engineering Structural Building Consultants	32008 32nd Ave S, Suite B Federal Way, WA 98001 (253) 220-0848	PREPARED FOR:	

LEVEL 1	LONGITUDINAL							
SHEARWALL	1-L1	1-L2	1-L3	1-L4				
AREA	421.3 SQ. FT.	553.8 SQ. FT.	666.1 SQ. FT.	330.1 SQ. FT.				
	TRANSVERSE							
SHEARWALL	1-T1	1-T2	1-T3	1-T4				
AREA	429.1 SQ. FT.	706.9 SQ. FT.	595.2 SQ. FT.	1104.5 SQ. FT.				
TOTAL AREA	3666.5	SQ. FT.						

PROJECT NO. : 22.017 DESIGNED BY : COK DRAWN BY : COK ISSUE DATE :	MAK REMODEL MERCER ISLAND, WA					
DHP Engineering Structural Building Consultants	32008 32nd Ave S, Suite B Federal Way, WA 98001 (253) 220-0848	PREPARED FOR:				

Lateral Load Setup

Wind Loading (Exposure C, V_{basic} = 98 mph, Pressures Adjusted to ASD Level)

Level 5)		Lo	ngitudir	nal	Transvers			e			
Elevation (ft)											
Pressures (psf)											
Area (sq. ft.)											
Total Loads (lbs	ads (lbs)			0				0			
Level 4)											
Elevation (ft)											
Pressures (psf)											
Area (sq. ft.)											
Total Loads (lbs)			(0			0			
Level 3)											
Elevation (ft)											
Pressures (psf)											
Area (sq. ft.)											
Total Loads (lbs)			(D				()		
Level 2)											
Elevation (ft)											
Pressures (psf)											
Area (sq. ft.)											
Total Loads (lbs	otal Loads (lbs)			0				0			
Level 1)											
Elevation (ft)	Roof	20'	10'			Roof	30'	20'	10'		
Pressures (psf)	4.8	20.2	19.4			4.8	21.5	20.4	19.6		
Area (sq. ft.)	221.8	203.0	33.8			117.3	30.5	502.7	46.0		
Total Loads (lbs)			58	26				123	376		

Lateral Load Setup Effective Seismic Weight

Level 5)						
Assembly Typ	e	Roof	Floor	Deck	Total Wall Length (ft)	0
Area (sq. ft.)		0	0 0		Wall Height (ft)	0
Dead Load (ps	sf)	0	0	0	Wall Assembly Weight (psf)	0
Total Weight	(lbs)	0				
Level 4)						
Assembly Typ	e	Roof	Floor	Deck	Total Wall Length (ft)	0
Area (sq. ft.)		0	0	0	Wall Height (ft)	0
Dead Load (ps	sf)	0	0	0	Wall Assembly Weight (psf)	0
Total Weight	(lbs)	0				
Level 3)						
Assembly Typ	e	Roof	Floor	Deck	Total Wall Length (ft)	0
Area (sq. ft.)		0	0	0	Wall Height (ft)	0
Dead Load (ps	sf)	0	0	0	Wall Assembly Weight (psf)	0
Total Weight	(lbs)	0				
Level 2)						
Assembly Typ	e	Roof	Floor	Deck	Total Wall Length (ft)	0
Area (sq. ft.)		0	0	0	Wall Height (ft)	0
Dead Load (ps	sf)	0	0	0	Wall Assembly Weight (psf)	0
Total Weight	(lbs)	0				
Level 1)						
Assembly Typ	e	Roof	Floor	Deck	Total Wall Length (ft)	533
Area (sq. ft.)		3667	0	0	Wall Height (ft)	10
Dead Load (ps	sf)	15	0	0	Wall Assembly Weight (psf)	8
Total Weight	(lbs)	7631	8			

Lateral Load Summary

	Win			
	Longitudinal	: Loads (lbs)		
Level 5				
Level 4				
Level 3				
Level 2				
Level 1	5826	12376	1	.2841

Seismic Force Distribution

$C_{s, ASD}$	0.1294	S _{DS}	1.178	T (s)	0.566
ρ	1.3	I _e	1.00	k	1.03

							F	рх	F_{px}	F _{px}
	W _x	h _x	C _{vx}	$\Sigma_x^n w_i$	F _x	$\Sigma_x^{\ n}F_i$	Min	Max	Calc	Design
Level 5	0									
Level 4	0									
Level 3	0									
Level 2	0									
Level 1	76318	10	1.000	76318	12841	12841	17980	35961	12841	17980

V	12841
---	-------

Where,

 ρ = Redundancy factor

S_{DS} = Design Spectral Acceleration

 I_e = Earthquake Importance Factor

T (s) = Fundamental Period of the Structure

k = Structure Period Exponent

w_x = Effective Seismic Weight of Level X (lbs)

h_x = Height of Level X from the Base of Sturcture (ft)

c_{vx} = Vertical Distribution Factor for Level X

 $\Sigma_x^n w_i$ = Sum of Tributary Weights (lbs)

 $C_{s, ASD}$ = Seimsic Response Coefficient Multiplied by 0.7 for ASD Calculations

F_x = Seismic Force at Level X (lbs)

 $\Sigma_x^{n} F_i$ = Sum of Tributary Weights (lbs)

F_{px} = Diaphragm Force at Level X (lbs)

V = Seismic base Shear (lbs)

Unit Shear and Uplift

Equations)

v=V/L

T=C=vh

 $\delta sw=(8vh^3)/(EAb)+(vh)/(1000Ga)+(h\Delta a)/b$

Where

v = Design Unit Shear (plf) (Both unadjusted and adjusted values are given where the aspect ratio reduction (v*(1.25-.125(w/h)) applies per SDPWS 4.3.4, only unadjusted values are reported otherwise)

V = Force to Shear Line (lbs) (Given for wind and seismic)

L = Sum of Wall Lengths in Shear Line (ft)

Lw = b = Individual Wall Segment Length (ft)

T = C = Uplift/Compression Loads (lbs, ±)

h = Story Height (ft)

E = Modulus of Elasticity of End Posts (psi) (Value for #1 DF is entered by default per holdown table on plans)

A = Area of End Posts Cross Section (in2)

 $\Delta a = Total Elongation of Wall Anchorage (in)$

Ga = Apparent Shearwall Stiffness (k/in)

 $\delta sw = Maximum$ Shearwall Deflection (in)

Notes: Input loads have been ALREADY BEEN ADJUSTED per ASCE 7-16 section 2.4. Basic uplift divides factored uplift by 0.6 for wind loads and 0.7 for seismic for further use in separate analysis programs.

Widths and areas for wind and seismic force distribution are calculated separately.

ASD unit shear for wind and seismic are reported. Unadjusted values do not take segment length to story height ratio into account. Adjusted values are <u>increased</u> to the shear required rather than having to reduce the wall capacities as is done in the 2015 SDPWS.

ASD factored uplift loads are calculated directly from the input loads (which are already adjusted to ASD level) and service loads divide the ASD factored loads by the corresponding factor for either wind or seismic.

Shearwall naming convention is X-YY-Z, where X is the building level, YY denotes the direction of loading and the overall

Shearline 1-L1	Additional Loads (Where Applicable)						
Level 1	Shearline						
Longitudinal	Percentage						
	Wind						
	Seismic						

Wind		Seismic		Total Loads to Shea	r Line
Tributary Width (ft)	122	Tributary Area (sq.ft.)	Tributary Area (sq.ft.) 421.3		1154
Total Width (ft)	616	Total Area (sq.ft.)	3667	Seismic Load (lbs)	1475

Walls in Shearline	1	2	3	4	5	6	7	8	9	10	Total
Length (ft)	5.25	5									10.25

h (ft)

10

					-			
	v (j	olf)	Sheathing		δ _{sw} (in)		Uplift (lbs)	
	Unadjusted	Adjusted	Unadjusted	Adjusted	Unadjusted	Adjusted	Service	ASD
Wind	113		W6		0.103		1876	1126
Seismic	144		W6		0.132		2056	1440

Resisiting Dead	Loads		
Load Source	Weight (olf)	Unfactored Loads at Ends of Wall (lbs)
Wall	80		200
Total Unfactore	ed Loads	200	

Shearwall

	Adjusted Reactions (lbs)						
	Tension	Compression					
Wind	1006	1246					
Seismic	1352	1672					

 $L_w(ft)$

5

Adjusted Deadloads (lbs)	
Wind	
0.6D	120
Seismic	
(1.0+0.14SDS)D	233
(0.6-0.14SDS)D	87

Δ _a (in)	0.010	Panel ⁻		
G _a (k/in)	Unadj.	Adjusted		
Wind	15			
Seismic	15			

CS20

Holdown

Wood Species		Hem-fir	
Panel Type			6, 8d, OSB

End Post	(2)2x6
A (in ²)	16.5
E (psi)	1,700,000

Shearline 1-L2	Additional I	Loads (Wher	re Applicable	e)		
Level 1	Shearline			-		
Longitudinal	Percentage					
	Wind					
	Seismic					

Wind		Seismic		Total Loads to Shea	r Line
Tributary Width (ft)	164.3	Tributary Area (sq.ft.)	553.8	Wind Load (lbs)	1554
Total Width (ft)	616	Total Area (sq.ft.)	3667	Seismic Load (lbs)	1940

Walls in Shearline	1	2	3	4	5	6	7	8	9	10	Total
Length (ft)	11.00										11.00

h (ft)

10

	v (plf)		Sheathing		δ _{sw} (in)		Uplift (lbs)	
	Unadjusted	Adjusted	Unadjusted	Adjusted	Unadjusted	Adjusted	Service	ASD
Wind	141		W6		0.110		2355	1413
Seismic	176		W6		0.137		2519	1763

Resisiting Dead	Loads	
Load Source	Weight (plf)	Unfactored Loads at Ends of Wall (lbs)
Wall	80	440
Total Unfactore	ed Loads	440

Shearwall

	Adjusted Reactions (lbs)				
	Tension Compression				
Wind	1149	1677			
Seismic	1572	2276			

L_w (ft)

11

Adjusted Deadloads (lbs)	
Wind	
0.6D	264
Seismic	
(1.0+0.14SDS)D	513
(0.6-0.14SDS)D	191

Holdown	CS20	Wood S
Δ_{a} (in)	0.010	Panel T
G _a (k/in)	Unadj.	Adjusted
Wind	15	

15

Seismic

Wood Species		Hem-fir	
Panel Type	Sh	eathing, 7/1	.6, 8d, OSB

End Post	(2)2x6
A (in ²)	16.5
E (psi)	1,700,000

Shearline 1-L3	Additional Loads (Where Applicable)
Level 1	Shearline
Longitudinal	Percentage
	Wind
	Seismic

Wind		Seismic		Total Loads to Shea	r Line	
Tributary Width (ft)	199.4	Tributary Area (sq.ft.)	666.1	Wind Load (lbs)	1886	1
Total Width (ft)	616	Total Area (sq.ft.)	3667	Seismic Load (lbs)	2333	

Walls in Shearline	1	2	3	4	5	6	7	8	9	10	Total
Length (ft)	13.33										13.33

h (ft)

10

	v (j	olf)	Sheathing		δ _{sw} (in)		Uplift (lbs)	
	Unadjusted	Adjusted	Unadjusted	Adjusted	Unadjusted	Adjusted	Service	ASD
Wind	141		W6		0.108		2358	1415
Seismic	175		W6		0.133		2500	1750

Resisiting Dead	Loads	
Load Source	Weight (plf)	Unfactored Loads at Ends of Wall (lbs)
Wall	80	533
Total Unfactore	ed Loads	533

Shearwall

	Adjusted Reactions (lbs)				
	Tension	Compression			
Wind	1095	1735			
Seismic	1518	2371			

L_w (ft) 13.33

Adjusted Deadloads (lbs)	
Wind	
0.6D	320
Seismic	
(1.0+0.14SDS)D	621
(0.6-0.14SDS)D	232

Holdown	CS20	Wood S
Δ_{a} (in)	0.010	Panel T
G _a (k/in)	Unadj.	Adjusted
Wind	15	
Seismic	15	

Wood Spec	Wood Species			
Panel Type	Sheathing, 7/16, 8d, OSB			

End Post	(2)2x6
A (in ²)	16.5
E (psi)	1,700,000

Shearline 1-L4	Additional L	Additional Loads (Where Applicable)					
Level 1	Shearline			-			
Longitudinal	Percentage						
	Wind						
	Seismic						

Wind		Seismic		Total Loads to Shea	r Line	
Tributary Width (ft)	130.4	Tributary Area (sq.ft.)	Tributary Area (sq.ft.) 330.1		1233	
Total Width (ft)	616	Total Area (sq.ft.)	3667	Seismic Load (lbs)	1156	

Walls in Shearline	1	2	3	4	5	6	7	8	9	10	Total
Length (ft)	5.33	5.33									10.66

h (ft)

10

	v (plf)		Sheathing		δ _{sw} (in)		Uplift (lbs)	
	Unadjusted	Adjusted	Unadjusted	Adjusted	Unadjusted	Adjusted	Service	ASD
Wind	116		W6		0.104		1928	1157
Seismic	108		W6		0.098		1549	1085

Resisiting Dead	Loads	
Load Source	Weight (plf)	Unfactored Loads at Ends of Wall (lbs)
Wall	80	213
Total Unfactore	ed Loads	213

Shearwall

	Adjusted Reactions (lbs)					
	Tension Compressio					
Wind	1029	1285				
Seismic	992	1333				

 $L_w(ft)$

5.33

Adjusted Deadloads (lbs)	
Wind	
0.6D	128
Seismic	
(1.0+0.14SDS)D	248
(0.6-0.14SDS)D	93

		,
Holdown	CS20	Wood S
Δ_{a} (in)	0.010	Panel T
		<u> </u>
G _a (k/in)	Unadj.	Adjusted
Wind	15	
Seismic	15	

Wood Species		Hem-fir	
Panel Type	Sh	eathing, 7/1	.6, 8d, OSB

End Post	(2)2x6		
A (in ²)	16.5		
E (psi)	1,700,000		

Shearline 1-T1	Additional Loads (Where Applicable)		
Level 1	Shearline		
Transverse	Percentage		
	Wind		
	Seismic		

Wind		Seismic		Total Loads to Shea	r Line
Tributary Width (ft)	109.4	Tributary Area (sq.ft.)	429.1	Wind Load (lbs)	1611
Total Width (ft)	840.5	Total Area (sq.ft.)	3667	Seismic Load (lbs)	1503

Walls in Shearline	1	2	3	4	5	6	7	8	9	10	Total
Length (ft)	13.5	6.33	19.33								39.16

h (ft)

10

	v (j	olf)	Shea	thing	δ_{sw}	(in)	Uplift	t (lbs)
	Unadjusted	Adjusted	Unadjusted	Adjusted	Unadjusted	Adjusted	Service	ASD
Wind	41		W6		0.048		686	411
Seismic	38		W6		0.045		548	384

Resisiting Dead	Loads	
Load Source	Weight (plf)	Unfactored Loads at Ends of Wall (lbs)
Wall	80	253
Total Unfactore	ed Loads	253

Shearwall

	Adjusted Reactions (lbs)				
	Tension Compress				
Wind	259	563			
Seismic	274	679			

 $L_w(ft)$

6.33

Adjusted Deadloads (lbs)					
Wind					
0.6D	152				
Seismic					
(1.0+0.14SDS)D	295				
(0.6-0.14SDS)D	110				

		,
Holdown	HDU2	Wood S
Δ_{a} (in)	0.088	Panel T
G _a (k/in)	Unadj.	Adjusted
Wind	15	
Seismic	15	

Wood Spec	ies	Hem-fir	
Panel Type	Sheathing, 7/16, 8d, OSB		

End Post	(2)2x6		
A (in ²)	16.5		
E (psi)	1,700,000		

Shearline 1-T2	Additional Loads (Where Applicable)
Level 1	Shearline
Transverse	Percentage
	Wind Wind
	Seismic

Wind		Seismic		Total Loads to Shea	r Line
Tributary Width (ft)	165.2	Tributary Area (sq.ft.)	706.9	Wind Load (lbs)	2432
Total Width (ft)	840.5	Total Area (sq.ft.)	3667	Seismic Load (lbs)	2476

Walls in Shearline	1	2	3	4	5	6	7	8	9	10	Total
Length (ft)	13.5										13.5

h (ft)

10

	v (j	plf)	Shea	thing	δ _{sw}	(in)	Uplif	t (lbs)
	Unadjusted	Adjusted	Unadjusted	Adjusted	Unadjusted	Adjusted	Service	ASD
Wind	180		W6		0.162		3003	1802
Seismic	183		W6		0.165		2620	1834

Resisiting Dead	Loads	
Load Source	Weight (plf)	Unfactored Loads at Ends of Wall (lbs)
Wall	80	540
Total Unfactore	ed Loads	540

Shearwall

	Adjusted Reactions (lbs)			
	Tension	Compression		
Wind	1478	2126		
Seismic	1599	2463		

 $L_w(ft)$

13.5

Adjusted Deadloads (lbs)				
Wind				
0.6D	324			
Seismic				
(1.0+0.14SDS)D	629			
(0.6-0.14SDS)D	235			

		r
Holdown	HDU2	Wood S
Δ_{a} (in)	0.088	Panel T
G _a (k/in)	Unadj.	Adjusted
Wind	15	
Seismic	15	

Wood Spec	ies	Hem-fir	
Panel Type	Sh	eathing, 7/1	.6, 8d, OSB

End Post	(2)2x6
A (in ²)	16.5
E (psi)	1,700,000

Shearline 1-T3	Additional Loads (Where Applicable)				
Level 1	Shearline				
Transverse	Percentage				
	Wind				
	Seismic				

Wind		Seismic		Total Loads to Shea	r Line
Tributary Width (ft)	152.4	Tributary Area (sq.ft	Tributary Area (sq.ft.) 595.2		2244
Total Width (ft)	840.5	Total Area (sq.ft.)	3667	Seismic Load (lbs)	2085

Walls in Shearline	1	2	3	4	5	6	7	8	9	10	Total
Length (ft)	10										10

h (ft)

10

	v (plf)		Sheathing		δ _{sw} (in)		Uplift (lbs)	
	Unadjusted	Adjusted	Unadjusted	Adjusted	Unadjusted	Adjusted	Service	ASD
Wind	224		W6		0.220		3740	2244
Seismic	208		W6		0.205		2978	2085

Resisiting Dead	Loads	
Load Source	Weight (plf)	Unfactored Loads at Ends of Wall (lbs)
Wall	80	400
Total Unfactore	ed Loads	400

Shearwall

	Adjusted Re	actions (lbs)				
	Tension Compression					
Wind	2004	2484				
Seismic	1911	2551				

 $L_w(ft)$

10

Adjusted Deadloads (lbs)	
Wind	
0.6D	240
Seismic	
(1.0+0.14SDS)D	466
(0.6-0.14SDS)D	174

Holdown	HDU2	Wood S
Δ _a (in)	0.088	Panel T
G _a (k/in)	Unadj.	Adjusted
Wind	15	
Seismic	15	

Wood Spec	Wood Species		
Panel Type	Sh	eathing, 7/1	.6, 8d, OSB

End Post	(2)2x6
A (in ²)	16.5
E (psi)	1,700,000

Page	47	of	107
, ago			

Shearline 1-T4	Additional Loads (Where Applicable)					
Level 1	Shearline		-			
Transverse	Percentage					
	Wind					
	Seismic					

Wind		Seismic		Total Loads to Shea	r Line
Tributary Width (ft)	241.6	Tributary Area (sq.ft.)	1105	Wind Load (lbs)	3557
Total Width (ft)	840.5	Total Area (sq.ft.) 3667		Seismic Load (lbs)	3868

Walls in Shearline	1	2	3	4	5	6	7	8	9	10	Total
Length (ft)	17	18									35

h (ft)

10

	v (j	olf)	Shea	thing	δ_{sw}	(in)	Uplif	t (lbs)
	Unadjusted	Adjusted	Unadjusted	Adjusted	Unadjusted	Adjusted	Service	ASD
Wind	102		W6		0.087		1694	1016
Seismic	111		W6		0.094		1579	1105

Resisiting Dead	Loads		
Load Source	Weight (p	olf)	Unfactored Loads at Ends of Wall (lbs)
Wall	80		680
(E) Roof	97.5		829
Total Unfactore	d Loads		1509

Shearwall

	Adjusted Reactions (lbs)				
	Tension Compressio				
Wind	111	1922			
Seismic	449	2863			

 $L_w(ft)$

17

Adjusted Deadloads (lbs)	
Wind	
0.6D	905
Seismic	
(1.0+0.14SDS)D	1758
(0.6-0.14SDS)D	656

Holdown	HDU2	v
Δ _a (in)	0.088	Р
G _a (k/in)	Unadj.	Adju
Wind	15	

Seismic

15

Wood Species		Hem-	fir		
Panel Type Sh		eathing,	, 7/1	.6, 8d, O	SB
djusted	Enc	d Post	()	2)2x6	

End Post	(2)2x6
A (in ²)	16.5
E (psi)	1,700,000

Simply Supported Diaphragms

Equations)

v=Vmax/W

T=C=Mmax/W

δdia=(5vL^3)/(8EAW)+(0.25vL)/(1000Ga)+(∑xΔc)/(2W)

Where

v = Design Unit Shear (plf)

Vmax = Maximum shear force in diaphragm, calculated by superimposing the typical uniformly distributed lateral load and any additional point loads from non stacking shear walls above and summing the shear at 1/10th points along the width of the diaphragm to find the controlling value

T = C = Diaphragm chord tension and compression forces (lbs)

Mmax = Maximum moment in diaphragm, calculated by superimposing the typical uniformly distributed lateral load and any additional point loads from non stacking shear walls above and summing the moments at 1/10th points along the width of the diaphragm to find the controlling value

W = Depth of diaphragm parallel to loading (ft)

Ltotal = Total width of building perpendicular to loading direction (ft)

L = Width of diaphragm perpendicular to loading between supports (lines of shear resistence) (ft)

nmin = The required amount of nails at splices based on Vnail (allowable shear capacity of fasteners at splices)

x = Distance between chord splices (ft), it is assumed that the distance will be the maximum length that can be used given diaphragm width based on typical 2x member length from most lumber stores (8ft, 12ft, or 16ft)

Nsplice = The total number of splices that occur alond the width of the diaphragm assuming an "x" value as noted above

xi = The distance between a given splice and the nearest diaphragm support (ft).

E = Modulus of Elasticity of chord members (psi) (Values for #2 HF or DF used as noted in analysis)

A = Area of chord (in2). As is done in 2015 SDPWS example C4.2.2-3, "A" is the area of a single framing member even when using a double top plate as theoretically a single member carries the force between splices.

 Δc = Slip associated with each splice (in)

 γ = Load slip modulus for dowel type fasteners per NDS section 11.3.6 (180000D^1.5)

D = Diameter of fasteners at chord splices (in)

Ga = Apparent Diaphragm Stiffness (k/in)

Controlling Diaphragm Between 1-L3 and 1-L4

Level 1
Transverse

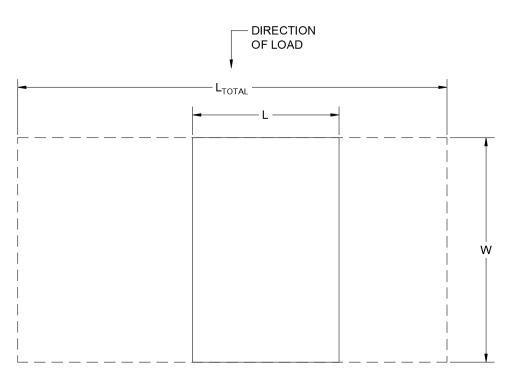
Total Loads to Shear Line					
Wind Load (lbs)	d Load (lbs) 12376				
Seismic Load (lbs)	1798	0			

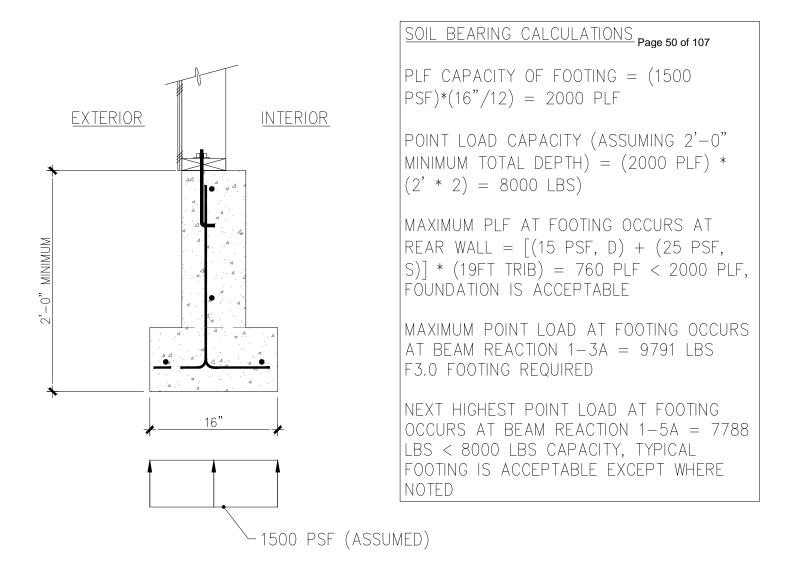
Diaphragm Load Case Case 1

Diaphragm Condition
Simple

-L3 and 1-L4										
Point Loads	s from S	hearw	valls (\	Where	Applicab	e)				
Shearline										
Location										
Wind										
Seismic										
L _{total} (ft) 5	1.5	L (f	t) 2	1.5	W (ft)	32		x (ft)	16	
		-					_			

A (ft2) 8.25


Wood Species	Hem-fir
E (psi)	1,300,000


D (in)	0.148
γ (lb/in/nail)	10249
V _{nail} (lbs)	163.2

x (ft)	16
N_{splice}	1
x ₁ (ft)	5.5
x ₂ (ft)	
x ₃ (ft)	
x ₄ (ft)	
x ₅ (ft)	

	Deflection Components						
	δ_{chord}	δ_{panel}	∆c (in)	δ_{slip}	G _a (k/in)		
Wind	0.002	0.056	0.024	0.002	13		
Seismic	0.003	0.069	0.022	0.002	15		

	v _{max} (plf)	T/C _{max} (lbs)	n _{min}	δ_{total} (in)
Wind	81	434	3	0.060
Seismic	117	630	4	0.074

PROJECT NO. : 22.017 DESIGNED BY : COK DRAWN BY : COK ISSUE DATE :	MAK REMOE MERCER ISLAND,	
DHP Engineering Structural Building Consultants		PREPARED FOR:

Lic. # : KW-06004293

DESCRIPTION: F1.5

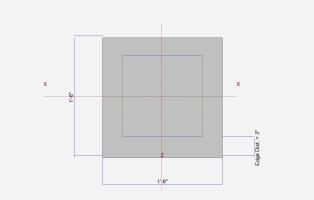
Code References

Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : ASCE 7-16

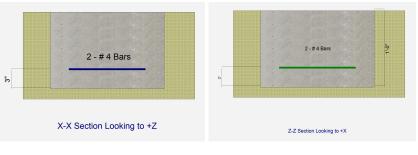
General Information

Material Properties fc : Concrete 28 day strength fy : Rebar Yield Ec : Concrete Elastic Modulus Concrete Density p Values Flexure	= = = =	3.0 ksi 60.0 ksi 3,122.0 ksi 145.0 pcf 0.90	Soil Design Values Allowable Soil Bearing Increase Bearing By Footing Weight Soil Passive Resistance (for Sliding) Soil/Concrete Friction Coeff.	= = =	1.50 ksf No 250.0 pcf 0.30
Shear Analysis Settings Min Steel % Bending Reinf. Min Allow % Temp Reinf. Min. Overturning Safety Factor	=	0.750 = = 0.00180 = 1.0 : 1	Increases based on footing Depth Footing base depth below soil surface Allow press. increase per foot of depth when footing base is below	= = =	1.0 ft ksf ft
Min. Sliding Safety Factor Add Ftg Wt for Soil Pressure Use ftg wt for stability, moments & shears Add Pedestal Wt for Soil Pressure Use Pedestal wt for stability, mom & shear		= 1.0 : 1 : Yes : Yes : No : No	Increases based on footing plan dimension Allowable pressure increase per foot of depth when max. length or width is greater than	=	ksf ft

Project Title: Engineer: Project ID: Project Descr:


Dimensions

Width parallel to X-X Axis	=	1.50 ft
Length parallel to Z-Z Axis	=	1.50 ft
Footing Thickness	=	12.0 in


Pedestal dimensions		
px : parallel to X-X Axis	=	in
pz : parallel to Z-Z Axis	=	in
Height	=	in
Rebar Centerline to Edge of C	oncrete	
at Bottom of footing	-	3.0 in
at bottom of looting	-	0.0 11

Reinforcing

Bars parallel to X-X Axis Number of Bars Reinforcing Bar Size Bars parallel to Z-Z Axis Number of Bars Reinforcing Bar Size Bandwidth Distribution Check (A Direction Requiring Closer Separa	,	#	2.0 4 2.0 4
# Bars required within zone # Bars required on each side of zon	ne		n/a n/a n/a

z

Applied Loads

		D	Lr	L	S	W	E	Н
P : Column Load OB : Overburden	=			3.0				k ksf
M-xx M-zz	=							k-ft k-ft
V-x	=							k
V-z	=							ĸ

Printed: 27 DEC 2021, 4:41PM File: Foundations and Footings.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.17 DHP ENGINEERING

Lic. # : KW-06004293

DESCRIPTION: F1.5

DESIGN SUMMARY

Printed: 27 DEC 2021, 4:41PM

File: Foundations and Footings.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.17 DHP ENGINEERING

DESI	GN SL	IMMARY				Design OK
		Min. Ratio	Item	Applied	Capacity	Governing Load Combination
P	ASS	0.9853	Soil Bearing	1.478 ksf	1.50 ksf	+D+L+H about Z-Z axis
P	ASS	n/a	Overturning - X-X	0.0 k-ft	0.0 k-ft	No Overturning
P	ASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning
P	ASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding
P	ASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding
P	ASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
P	ASS	0.05722	Z Flexure (+X)	0.60 k-ft/ft	10.486 k-ft/ft	+1.20D+0.50Lr+1.60L+1.60H
P	ASS	0.05722	Z Flexure (-X)	0.60 k-ft/ft	10.486 k-ft/ft	+1.20D+0.50Lr+1.60L+1.60H
P	ASS	0.05722	X Flexure (+Z)	0.60 k-ft/ft	10.486 k-ft/ft	+1.20D+0.50Lr+1.60L+1.60H
P/	ASS	0.05722	X Flexure (-Z)	0.60 k-ft/ft	10.486 k-ft/ft	+1.20D+0.50Lr+1.60L+1.60H
P	ASS	n/a	1-way Shear (+X)	0.0 psi	82.158 psi	n/a
P	ASS	0.0	1-way Shear (-X)	0.0 psi	0.0 psi	n/a
P	ASS	n/a	1-way Shear (+Z)	0.0 psi	82.158 psi	n/a
P	ASS	n/a	1-way Shear (-Z)	0.0 psi	82.158 psi	n/a
P	ASS	n/a	2-way Punching	11.111 psi	82.158 psi	+1.20D+0.50Lr+1.60L+1.60H
Detai	led Re	sults				

Soil Bearing

Soll Bearing		Xecc	7000	Act	ual Call Dearing Ctra		A = to = 1 / A !! =	
Rotation Axis & Load Combination	Gross Allowable	xecc	Zecc (in)	Act Bottom, -Z	ual Soil Bearing Stre Top, +Z	Loca Left, -X	Right, +X	Actual / Allow Ratio
					•		0	
X-X, +D+H	1.50	n/a	0.0	0.1450	0.1450	n/a	n/a	0.097
X-X, +D+L+H	1.50	n/a	0.0	1.478	1.478	n/a	n/a	0.985
X-X, +D+Lr+H	1.50	n/a	0.0	0.1450	0.1450	n/a	n/a	0.097
X-X, +D+S+H	1.50	n/a	0.0	0.1450	0.1450	n/a	n/a	0.097
X-X, +D+0.750Lr+0.750L+H	1.50	n/a	0.0	1.145	1.145	n/a	n/a	0.763
X-X, +D+0.750L+0.750S+H	1.50	n/a	0.0	1.145	1.145	n/a	n/a	0.763
X-X, +D+0.60W+H	1.50	n/a	0.0	0.1450	0.1450	n/a	n/a	0.097
X-X, +D+0.750Lr+0.750L+0.450W+H		n/a	0.0	1.145	1.145	n/a	n/a	0.763
X-X, +D+0.750L+0.750S+0.450W+H		n/a	0.0	1.145	1.145	n/a	n/a	0.763
X-X, +0.60D+0.60W+0.60H	1.50	n/a	0.0	0.0870	0.0870	n/a	n/a	0.058
X-X, +D+0.70E+0.60H	1.50	n/a	0.0	0.1450	0.1450	n/a	n/a	0.097
X-X, +D+0.750L+0.750S+0.5250E+H		n/a	0.0	1.145	1.145	n/a	n/a	0.763
X-X, +0.60D+0.70E+H	1.50	n/a	0.0	0.0870	0.0870	n/a	n/a	0.058
Z-Z, +D+H	1.50	0.0	n/a	n/a	n/a	0.1450	0.1450	0.097
Z-Z, +D+L+H	1.50	0.0	n/a	n/a	n/a	1.478	1.478	0.985
Z-Z, +D+Lr+H	1.50	0.0	n/a	n/a	n/a	0.1450	0.1450	0.097
Z-Z, +D+S+H	1.50	0.0	n/a	n/a	n/a	0.1450	0.1450	0.097
Z-Z, +D+0.750Lr+0.750L+H	1.50	0.0	n/a	n/a	n/a	1.145	1.145	0.763
Z-Z, +D+0.750L+0.750S+H	1.50	0.0	n/a	n/a	n/a	1.145	1.145	0.763
Z-Z, +D+0.60W+H	1.50	0.0	n/a	n/a	n/a	0.1450	0.1450	0.097
Z-Z, +D+0.750Lr+0.750L+0.450W+H		0.0	n/a	n/a	n/a	1.145	1.145	0.763
Z-Z, +D+0.750L+0.750S+0.450W+H	1.50	0.0	n/a	n/a	n/a	1.145	1.145	0.763
Z-Z, +0.60D+0.60W+0.60H	1.50	0.0	n/a	n/a	n/a	0.0870	0.0870	0.058
Z-Z, +D+0.70E+0.60H	1.50	0.0	n/a	n/a	n/a	0.1450	0.1450	0.097
Z-Z, +D+0.750L+0.750S+0.5250E+H	1.50	0.0	n/a	n/a	n/a	1.145	1.145	0.763
Z-Z, +0.60D+0.70E+H	1.50	0.0	n/a	n/a	n/a	0.0870	0.0870	0.058
Overturning Stability								
Rotation Axis &								
Load Combination		Overturnir	ng Moment		Resisting Moment	Stat	oility Ratio	Status
Footing Has NO Overturning								
Sliding Stability								All units k
Force Application Axis								
Load Combination		Sliding	g Force		Resisting Force	Stat	oility Ratio	Status
Footing Has NO Sliding								

Footing Has NO Sliding

Title Block Line 1 You can change this area using the "Settings" menu item and then using the "Printing & Title Block" selection. Title Block Line 6

General Footing

Lic. # : KW-06004293

DESCRIPTION: F1.5

+1.20D+L+0.20S+E+1.60H

0.00 psi

0.00 psi

0.00 psi

0.00 psi

0.00 psi

82.16 psi

0.00

OK

Footing Flexure

Fooling Flexure									
Flexure Axis & Load Combination	Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	Actual As in^2	Phi*Mn k-ft		Status
X-X, +1.40D+1.60H	0.0	+Z	Bottom	0.2592	Min Temp %	0.2667	10.486		OK
X-X, +1.40D+1.60H	0.0	-Z	Bottom	0.2592	Min Temp %	0.2667	10.486		OK
X-X, +1.20D+0.50Lr+1.60L+1.60H	0.60	+Ž	Bottom	0.2592	Min Temp %	0.2667	10.486		ÖK
X-X, +1.20D+0.50Lr+1.60L+1.60H	0.60	-Z	Bottom	0.2592	Min Temp %	0.2667	10.486		ŎK
X-X, +1.20D+1.60L+0.50S+1.60H	0.60	+Z	Bottom	0.2592	Min Temp %	0.2667	10.486		OK
X-X, +1.20D+1.60L+0.50S+1.60H	0.60	-Z	Bottom	0.2592	Min Temp %	0.2667	10.486		OK
X-X, +1.20D+1.60Lr+L+1.60H	0.3750	+Z	Bottom	0.2592	Min Temp %	0.2667	10.486		OK
X-X, +1.20D+1.60Lr+L+1.60H	0.3750	-Z	Bottom	0.2592	Min Temp %	0.2667	10.486		OK
X-X, +1.20D+1.60Lr+0.50W+1.60H	0.0	+Z	Bottom	0.2592	Min Temp %	0.2667	10.486		OK
X-X, +1.20D+1.60Lr+0.50W+1.60H	0.0	-Z	Bottom	0.2592	Min Temp %	0.2667	10.486		OK
X-X, +1.20D+L+1.60S+1.60H	0.3750	+Z	Bottom	0.2592	Min Temp %	0.2667	10.486		OK
X-X, +1.20D+L+1.60S+1.60H	0.3750	-Z	Bottom	0.2592	Min Temp %	0.2667	10.486		OK
X-X, +1.20D+1.60S+0.50W+1.60H	0.0	+Z	Bottom	0.2592	Min Temp %	0.2667	10.486		OK
X-X, +1.20D+1.60S+0.50W+1.60H	0.0	-Z	Bottom	0.2592	Min Temp %	0.2667	10.486		OK
X-X, +1.20D+0.50Lr+L+W+1.60H	0.3750	+Z	Bottom	0.2592	Min Temp %	0.2667	10.486		OK
X-X, +1.20D+0.50Lr+L+W+1.60H	0.3750	-Z	Bottom	0.2592	Min Temp %	0.2667	10.486		OK
X-X, +1.20D+L+0.50S+W+1.60H	0.3750	+Z	Bottom	0.2592	Min Temp %	0.2667	10.486		OK
X-X, +1.20D+L+0.50S+W+1.60H	0.3750	-Z	Bottom	0.2592	Min Temp %	0.2667	10.486		OK
X-X, +0.90D+W+1.60H	0.0	+Z	Bottom	0.2592	Min Temp %	0.2667	10.486		OK
X-X, +0.90D+W+1.60H	0.0	-Z	Bottom	0.2592	Min Temp %	0.2667	10.486		OK
X-X, +1.20D+L+0.20S+E+1.60H	0.3750	+Z	Bottom	0.2592	Min Temp %	0.2667	10.486		OK
X-X, +1.20D+L+0.20S+E+1.60H X-X, +0.90D+E+0.90H	0.3750	-Z +Z	Bottom	0.2592 0.2592	Min Temp %	0.2667 0.2667	10.486 10.486		OK
X-X, +0.90D+E+0.90H X-X, +0.90D+E+0.90H	0.0 0.0	+Z -Z	Bottom Bottom	0.2592	Min Temp % Min Temp %	0.2667	10.486		OK OK
Z-Z, +1.40D+1.60H	0.0	-Z -X	Bottom	0.2592	Min Temp %	0.2667	10.486		OK OK
Z-Z, +1.40D+1.60H	0.0	-× +X	Bottom	0.2592	Min Temp %	0.2667	10.486		OK
Z-Z, +1.20D+1.00T Z-Z, +1.20D+0.50Lr+1.60L+1.60H	0.60	-X	Bottom	0.2592	Min Temp %	0.2667	10.486		OK
Z-Z, +1.20D+0.50Lr+1.60L+1.60H	0.60	+X	Bottom	0.2592	Min Temp %	0.2667	10.486		OK
Z-Z, +1.20D+1.60L+0.50S+1.60H	0.60	-X	Bottom	0.2592	Min Temp %	0.2667	10.486		OK
Z-Z, +1.20D+1.60L+0.50S+1.60H	0.60	+X	Bottom	0.2592	Min Temp %	0.2667	10.486		OK
Z-Z, +1.20D+1.60Lr+L+1.60H	0.3750	-X	Bottom	0.2592	Min Temp %	0.2667	10.486		OK
Z-Z, +1.20D+1.60Lr+L+1.60H	0.3750	+X	Bottom	0.2592	Min Temp %	0.2667	10.486		ÖK
Z-Z, +1.20D+1.60Lr+0.50W+1.60H	0.0	-X	Bottom	0.2592	Min Temp %	0.2667	10.486		ÖK
Z-Z, +1.20D+1.60Lr+0.50W+1.60H	0.0	+X	Bottom	0.2592	Min Temp %	0.2667	10.486		ŎK
Z-Z, +1.20D+L+1.60S+1.60H	0.3750	-X	Bottom	0.2592	Min Temp %	0.2667	10.486		OK
Z-Z, +1.20D+L+1.60S+1.60H	0.3750	+X	Bottom	0.2592	Min Temp %	0.2667	10.486		ОK
Z-Z, +1.20D+1.60S+0.50W+1.60H	0.0	-X	Bottom	0.2592	Min Temp %	0.2667	10.486		OK
Z-Z, +1.20D+1.60S+0.50W+1.60H	0.0	+X	Bottom	0.2592	Min Temp %	0.2667	10.486		OK
Z-Z, +1.20D+0.50Lr+L+W+1.60H	0.3750	-X	Bottom	0.2592	Min Temp %	0.2667	10.486		OK
Z-Z, +1.20D+0.50Lr+L+W+1.60H	0.3750	+X	Bottom	0.2592	Min Temp %	0.2667	10.486		OK
Z-Z, +1.20D+L+0.50S+W+1.60H	0.3750	-X	Bottom	0.2592	Min Temp %	0.2667	10.486		OK
Z-Z, +1.20D+L+0.50S+W+1.60H	0.3750	+X	Bottom	0.2592	Min Temp %	0.2667	10.486		OK
Z-Z, +0.90D+W+1.60H	0.0	-X	Bottom	0.2592	Min Temp %	0.2667	10.486		OK
Z-Z, +0.90D+W+1.60H	0.0	+X	Bottom	0.2592	Min Temp %	0.2667	10.486		OK
Z-Z, +1.20D+L+0.20S+E+1.60H	0.3750	-X	Bottom	0.2592	Min Temp %	0.2667	10.486		OK
Z-Z, +1.20D+L+0.20S+E+1.60H	0.3750	+X	Bottom	0.2592	Min Temp %	0.2667	10.486		OK
Z-Z, +0.90D+E+0.90H	0.0	-X	Bottom	0.2592	Min Temp %	0.2667	10.486		OK
Z-Z, +0.90D+E+0.90H	0.0	+Χ	Bottom	0.2592	Min Temp %	0.2667	10.486		OK
One Way Shear		Nula	. V	a 7 \/u	@.7 \/u			.!*\ /	Chattar
Load Combination +1.40D+1.60H	Vu@-X	Vu @	+X VU 0 0.00 psi	@ -Z Vu 0.00 psi	@ +Z Vu 0.00 psi	:Max Phi 0.00 psi	Vn Vu / Pł 82.16 psi	0.00	Status
+1.40D+1.60H +1.20D+0.50Lr+1.60L+1.60H	0.00 p		0.00 psi 0.00 psi	0.00 psi 0.00 psi	0.00 psi	0.00 psi 0.00 psi	82.16 psi	0.00	OK
	0.00 p					•			OK
+1.20D+1.60L+0.50S+1.60H	0.00 pt		0.00 psi	0.00 psi	0.00 psi	0.00 psi	82.16 psi	0.00	OK
+1.20D+1.60Lr+L+1.60H	0.00 p		0.00 psi	0.00 psi	0.00 psi	0.00 psi	82.16 psi	0.00	OK
+1.20D+1.60Lr+0.50W+1.60H	0.00 p		0.00 psi	0.00 psi	0.00 psi	0.00 psi	82.16 psi	0.00	OK
+1.20D+L+1.60S+1.60H	0.00 p		0.00 psi	0.00 psi	0.00 psi	0.00 psi	82.16 psi	0.00	OK
+1.20D+1.60S+0.50W+1.60H	0.00 pt		0.00 psi	0.00 psi	0.00 psi	0.00 psi	82.16 psi	0.00	OK
+1.20D+0.50Lr+L+W+1.60H	0.00 p		0.00 psi	0.00 psi	0.00 psi	0.00 psi	82.16 psi	0.00	OK
+1.20D+L+0.50S+W+1.60H	0.00 p		0.00 psi	0.00 psi	0.00 psi	0.00 psi	82.16 psi	0.00	OK
+0.90D+W+1.60H	0.00 p		0.00 psi	0.00 psi	0.00 psi	0.00 psi	82.16 psi	0.00	OK
+1 20D+L+0 20S+E+1 60H	0.00 p	si	0 00 nsi	0.00 nsi	0.00 nsi	0 00 nsi	82 16 nsi	0.00	OK

Printed: 27 DEC 2021, 4:41PM

File: Foundations and Footings.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.17 DHP ENGINEERING

Lic. # : KW-06004293

DESCRIPTION: F1.5

One Way Shear

Load Combination	Vu @ -X	Vu @ +X	Vu @ -Z	Vu @	+Z	Vu:Max	Phi Vn	Vu / Phi*Vr	Status
+0.90D+E+0.90H Two-Way "Punching" Shear	eq 00.0	i 0.00 ps	i 0.00) psi	0.00 psi	0.00 psi	82.1	6 psi 0.0 All u	00 OK hits k
Load Combination		Vu	P	hi*Vn		Vu / Phi*Vn			Status
+1.40D+1.60H +1.20D+0.50Lr+1.60L+1.60H +1.20D+1.60Lr+0.50S+1.60H +1.20D+1.60Lr+0.50S+1.60H +1.20D+1.60Lr+0.50W+1.60H +1.20D+L+1.60S+0.50W+1.60H +1.20D+L-0.50S+W+1.60H +1.20D+L+0.50S+W+1.60H +1.20D+L+0.20S+E+1.60H		0.00 psi 11.11 psi 11.11 psi 6.94 psi 0.00 psi 6.94 psi 0.00 psi 6.94 psi 0.00 psi 6.94 psi 0.00 psi 6.94 psi		164.32 psi 164.32 psi		$\begin{array}{c} 0\\ 0.06762\\ 0.06762\\ 0.04226\\ 0\\ 0.04226\\ 0\\ 0.04226\\ 0.04226\\ 0\\ 0.04226\\ 0\\ 0\\ 0.04226\end{array}$			OK OK OK OK OK OK OK OK

Printed: 27 DEC 2021, 4:41PM File: Foundations and Footings.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.17 DHP ENGINEERING

Lic. # : KW-06004293

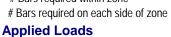
DESCRIPTION: F2.0

Code References

Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : ASCE 7-16

General Information

Material Properties		,		Soil Design Values
fc : Concrete 28 day strength	=		3.0 ksi	Allowable Soil Bearing
fy : Rebar Yield	=		D.O ksi	Increase Bearing By Footing Weight
Éc : Concrete Elastic Modulus	=	3,122	2.0 ksi	Soil Passive Resistance (for Sliding)
Concrete Density	=	145.0 pcf		Soil/Concrete Friction Coeff.
φ Values Flexure	=	0.	.90	
Shear	=	0.7	50	Increases based on footing Depth
Analysis Settings				Footing base depth below soil surface
Min Steel % Bending Reinf.		=		Allow press. increase per foot of depth
Min Allow % Temp Reinf.		=	0.00180	when footing base is below
Min. Overturning Safety Factor		=	1.0 : 1	5
Min. Sliding Safety Factor		=	1.0 : 1	Increases based on footing plan dimension
Add Ftg Wt for Soil Pressure		:	Yes	Allowable pressure increase per foot of depth
Use ftg wt for stability, moments & shears		:	Yes	when move length or width is greater than
Add Pedestal Wt for Soil Pressure		:	No	when max. length or width is greater than
Use Pedestal wt for stability, mom & shear		:	No	


Dimensions

Width parallel to X-X Axis	=	2.0 ft
Length parallel to Z-Z Axis	=	2.0 ft
Footing Thickness	=	12.0 in

Pedestal dimensions px : parallel to X-X Axis pz : parallel to Z-Z Axis Height	= = =	in in in
Rebar Centerline to Edge of C at Bottom of footing	concrete =	3.0 in

Reinforcing

Bars parallel to X-X Axis Number of Bars Reinforcing Bar Size	=	#	3.0 4	
Bars parallel to Z-Z Axis Number of Bars Reinforcing Bar Size Bandwidth Distribution Cheo Disation Dervicing Cleaner		#	3.0 4	
Direction Requiring Closer Se			n/a n/a	

	#	4							
15.4.4.2)	#	3.0 4	ħ	3 - # 4 Bars		3.#ABars			
		n/a n/a n/a		X-X Section Looking t	to +Z		Z-Z Section Looking to +X		
r	<u> </u>					14/			

	_	D	Lr	L	S	W	E	H
P : Column Load OB : Overburden	=			5.30				k ksf
M-xx M-zz	=							k-ft k-ft
V-x V-z	= =							k k

1.50 ksf

No

250.0 pcf 0.30

1.0 ft

ksf

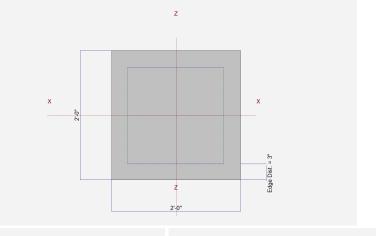
ft

ksf

ft

Printed: 21 JAN 2022, 10:19AM File: Foundations and Footings.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.17 DHP ENGINEERING

=


=

=

=

=

=

Lic. # : KW-06004293

DESCRIPTION: F2.0

DESIGN SUMMARY

Printed: 21 JAN 2022, 10:19AM

File: Foundations and Footings.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.17 DHP ENGINEERING

DESIGN SL	IMMARY				Design OK
	Min. Ratio	Item	Applied	Capacity	Governing Load Combination
PASS	0.980	Soil Bearing	1.470 ksf	1.50 ksf	+D+L+H about Z-Z axis
PASS	n/a	Overturning - X-X	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding
PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.09019	Z Flexure (+X)	1.060 k-ft/ft	11.753 k-ft/ft	+1.20D+0.50Lr+1.60L+1.60H
PASS	0.09019	Z Flexure (-X)	1.060 k-ft/ft	11.753 k-ft/ft	+1.20D+0.50Lr+1.60L+1.60H
PASS	0.09019	X Flexure (+Z)	1.060 k-ft/ft	11.753 k-ft/ft	+1.20D+0.50Lr+1.60L+1.60H
PASS	0.09019	X Flexure (-Z)	1.060 k-ft/ft	11.753 k-ft/ft	+1.20D+0.50Lr+1.60L+1.60H
PASS	0.05734	1-way Shear (+X)	4.711 psi	82.158 psi	+1.20D+0.50Lr+1.60L+1.60H
PASS	0.05734	1-way Shear (-X)	4.711 psi	82.158 psi	+1.20D+0.50Lr+1.60L+1.60H
PASS	0.05734	1-way Shear (+Z)	4.711 psi	82.158 psi	+1.20D+0.50Lr+1.60L+1.60H
PASS	0.05734	1-way Shear (-Z)	4.711 psi	82.158 psi	+1.20D+0.50Lr+1.60L+1.60H
PASS	0.1363	2-way Punching	22.393 psi	164.317 psi	+1.20D+0.50Lr+1.60L+1.60H
Detailed Re	sults				

Soil Bearing

Rotation Axis & Load Combination	Gross Allowable	Xecc	Zecc (in)	Act Bottom, -Z	ual Soil Bearing Stre Top, +Z	ss @ Locat Left, -X	tion Right, +X	Actual / Allov Ratio
					•		0	
X-X, +D+H	1.50	n/a	0.0	0.1450	0.1450	n/a	n/a	0.097
X-X, +D+L+H	1.50	n/a	0.0	1.470	1.470	n/a	n/a	0.980
X-X, +D+Lr+H	1.50	n/a	0.0	0.1450	0.1450	n/a	n/a	0.097
X-X, +D+S+H	1.50	n/a	0.0	0.1450	0.1450	n/a	n/a	0.097
X-X, +D+0.750Lr+0.750L+H	1.50	n/a	0.0	1.139	1.139	n/a	n/a	0.759
X-X, +D+0.750L+0.750S+H	1.50	n/a	0.0	1.139	1.139	n/a	n/a	0.759
X-X, +D+0.60W+H	1.50	n/a	0.0	0.1450	0.1450	n/a	n/a	0.097
X-X, +D+0.750Lr+0.750L+0.450W+H		n/a	0.0	1.139	1.139	n/a	n/a	0.759
X-X, +D+0.750L+0.750S+0.450W+H	1.50	n/a	0.0	1.139	1.139	n/a	n/a	0.759
X-X, +0.60D+0.60W+0.60H	1.50	n/a	0.0	0.0870	0.0870	n/a	n/a	0.058
X-X, +D+0.70E+0.60H	1.50	n/a	0.0	0.1450	0.1450	n/a	n/a	0.097
X-X, +D+0.750L+0.750S+0.5250E+H		n/a	0.0	1.139	1.139	n/a	n/a	0.759
X-X, +0.60D+0.70E+H	1.50	n/a	0.0	0.0870	0.0870	n/a	n/a	0.058
Z-Z, +D+H	1.50	0.0	n/a	n/a	n/a	0.1450	0.1450	0.097
Z-Z, +D+L+H	1.50	0.0	n/a	n/a	n/a	1.470	1.470	0.980
Z-Z, +D+Lr+H	1.50	0.0	n/a	n/a	n/a	0.1450	0.1450	0.097
Z-Z, +D+S+H	1.50	0.0	n/a	n/a	n/a	0.1450	0.1450	0.097
Z-Z, +D+0.750Lr+0.750L+H	1.50	0.0	n/a	n/a	n/a	1.139	1.139	0.759
Z-Z, +D+0.750L+0.750S+H	1.50	0.0	n/a	n/a	n/a	1.139	1.139	0.759
Z-Z, +D+0.60W+H	1.50	0.0	n/a	n/a	n/a	0.1450	0.1450	0.097
Z-Z, +D+0.750Lr+0.750L+0.450W+H		0.0	n/a	n/a	n/a	1.139	1.139	0.759
Z-Z, +D+0.750L+0.750S+0.450W+H	1.50	0.0	n/a	n/a	n/a	1.139	1.139	0.759
Z-Z, +0.60D+0.60W+0.60H	1.50	0.0	n/a	n/a	n/a	0.0870	0.0870	0.058
Z-Z, +D+0.70E+0.60H	1.50	0.0	n/a	n/a	n/a	0.1450	0.1450	0.097
Z-Z, +D+0.750L+0.750S+0.5250E+H		0.0	n/a	n/a	n/a	1.139	1.139	0.759
Z-Z, +0.60D+0.70E+H	1.50	0.0	n/a	n/a	n/a	0.0870	0.0870	0.058
Overturning Stability								
Rotation Axis &								
Load Combination		Overturnin	g Moment		Resisting Moment	Stab	oility Ratio	Status
Footing Has NO Overturning								
Sliding Stability								All units k
Force Application Axis								
Load Combination		Sliding	Force		Resisting Force	Stat	oility Ratio	Status
Footing Has NO Sliding								

Footing Has NO Sliding

Title Block Line 1 You can change this area using the "Settings" menu item and then using the "Printing & Title Block" selection. Title Block Line 6

General Footing

Lic. # : KW-06004293

DESCRIPTION: F2.0

Footing Flexure

+1.20D+L+0.20S+E+1.60H

rooting riexule								
Flexure Axis & Load Combination	Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	Actual As in^2	Phi*Mn k-ft	Status
X-X, +1.40D+1.60H	0.0	+Z	Bottom	0.2592	Min Temp %	0.30	11.753	ОК
X-X, +1.40D+1.60H	0.0	-Z	Bottom	0.2592	Min Temp %	0.30	11.753	OK
X-X, +1.20D+0.50Lr+1.60L+1.60H	1.060	+Ž	Bottom	0.2592	Min Temp %	0.30	11.753	ÖK
X-X, +1.20D+0.50Lr+1.60L+1.60H	1.060	-Z	Bottom	0.2592	Min Temp %	0.30	11.753	OK
X-X, +1.20D+1.60L+0.50S+1.60H	1.060	+Z	Bottom	0.2592	Min Temp %	0.30	11.753	OK
X-X, +1.20D+1.60L+0.50S+1.60H	1.060	-Z	Bottom	0.2592	Min Temp %	0.30	11.753	OK
X-X, +1.20D+1.60Lr+L+1.60H	0.6625	+Z	Bottom	0.2592	Min Temp %	0.30	11.753	OK
X-X, +1.20D+1.60Lr+L+1.60H	0.6625	-Z	Bottom	0.2592	Min Temp %	0.30	11.753	OK
X-X, +1.20D+1.60Lr+0.50W+1.60H X-X, +1.20D+1.60Lr+0.50W+1.60H	0.0 0.0	+Z -Z	Bottom Bottom	0.2592 0.2592	Min Temp % Min Temp %	0.30 0.30	11.753 11.753	OK OK
X-X, +1.20D+1.00L1+0.30W+1.0011 X-X, +1.20D+L+1.60S+1.60H	0.6625	-z +Z	Bottom	0.2592	Min Temp %	0.30	11.753	OK
X-X, +1.20D+L+1.60S+1.60H	0.6625	-Z	Bottom	0.2592	Min Temp %	0.30	11.753	OK
X-X, +1.20D+1.60S+0.50W+1.60H	0.0	+Z	Bottom	0.2592	Min Temp %	0.30	11.753	ŎK
X-X, +1.20D+1.60S+0.50W+1.60H	0.0	-Z	Bottom	0.2592	Min Temp %	0.30	11.753	ÖK
X-X, +1.20D+0.50Lr+L+W+1.60H	0.6625	+Z	Bottom	0.2592	Min Temp %	0.30	11.753	ОК
X-X, +1.20D+0.50Lr+L+W+1.60H	0.6625	-Z	Bottom	0.2592	Min Temp %	0.30	11.753	OK
X-X, +1.20D+L+0.50S+W+1.60H	0.6625	+Z	Bottom	0.2592	Min Temp %	0.30	11.753	OK
X-X, +1.20D+L+0.50S+W+1.60H	0.6625	-Z	Bottom	0.2592	Min Temp %	0.30	11.753	OK
X-X, +0.90D+W+1.60H	0.0	+Z	Bottom	0.2592	Min Temp %	0.30	11.753	OK
X-X, +0.90D+W+1.60H	0.0	-Z	Bottom	0.2592	Min Temp %	0.30	11.753	OK
X-X, +1.20D+L+0.20S+E+1.60H X-X, +1.20D+L+0.20S+E+1.60H	0.6625 0.6625	+Z -Z	Bottom Bottom	0.2592 0.2592	Min Temp % Min Temp %	0.30 0.30	11.753 11.753	OK OK
X-X, +1.20D+L+0.203+E+1.00H X-X, +0.90D+E+0.90H	0.0025	-z +Z	Bottom	0.2592	Min Temp %	0.30	11.753	OK
X-X, +0.90D+E+0.90H	0.0	-Z	Bottom	0.2592	Min Temp %	0.30	11.753	OK
Z-Z, +1.40D+1.60H	0.0	-X	Bottom	0.2592	Min Temp %	0.30	11.753	OK
Z-Z, +1.40D+1.60H	0.0	+X	Bottom	0.2592	Min Temp %	0.30	11.753	ÖK
Z-Z, +1.20D+0.50Lr+1.60L+1.60H	1.060	-X	Bottom	0.2592	Min Temp %	0.30	11.753	OK
Z-Z, +1.20D+0.50Lr+1.60L+1.60H	1.060	+X	Bottom	0.2592	Min Temp %	0.30	11.753	ОК
Z-Z, +1.20D+1.60L+0.50S+1.60H	1.060	-X	Bottom	0.2592	Min Temp %	0.30	11.753	OK
Z-Z, +1.20D+1.60L+0.50S+1.60H	1.060	+X	Bottom	0.2592	Min Temp %	0.30	11.753	OK
Z-Z, +1.20D+1.60Lr+L+1.60H	0.6625	-X	Bottom	0.2592	Min Temp %	0.30	11.753	OK
Z-Z, +1.20D+1.60Lr+L+1.60H	0.6625	+X	Bottom	0.2592	Min Temp %	0.30	11.753	OK
Z-Z, +1.20D+1.60Lr+0.50W+1.60H Z-Z, +1.20D+1.60Lr+0.50W+1.60H	0.0 0.0	-X +X	Bottom Bottom	0.2592 0.2592	Min Temp % Min Temp %	0.30 0.30	11.753 11.753	OK OK
Z-Z, +1.20D+1.60E1+0.50W+1.60H Z-Z, +1.20D+L+1.60S+1.60H	0.6625	-X	Bottom	0.2592	Min Temp %	0.30	11.753	OK
Z-Z, +1.20D+L+1.60S+1.60H	0.6625	+X	Bottom	0.2592	Min Temp %	0.30	11.753	OK
Z-Z, +1.20D+1.60S+0.50W+1.60H	0.0	-X	Bottom	0.2592	Min Temp %	0.30	11.753	ŎK
Z-Z, +1.20D+1.60S+0.50W+1.60H	0.0	+X	Bottom	0.2592	Min Temp %	0.30	11.753	OK
Z-Z, +1.20D+0.50Lr+L+W+1.60H	0.6625	-X	Bottom	0.2592	Min Temp %	0.30	11.753	OK
Z-Z, +1.20D+0.50Lr+L+W+1.60H	0.6625	+X	Bottom	0.2592	Min Temp %	0.30	11.753	OK
Z-Z, +1.20D+L+0.50S+W+1.60H	0.6625	-X	Bottom	0.2592	Min Temp %	0.30	11.753	OK
Z-Z, +1.20D+L+0.50S+W+1.60H	0.6625	+X	Bottom	0.2592	Min Temp %	0.30	11.753	OK
Z-Z, +0.90D+W+1.60H	0.0	-X	Bottom	0.2592	Min Temp %	0.30	11.753	OK
Z-Z, +0.90D+W+1.60H Z-Z, +1.20D+L+0.20S+E+1.60H	0.0 0.6625	+X -X	Bottom Bottom	0.2592 0.2592	Min Temp % Min Temp %	0.30 0.30	11.753 11.753	OK OK
Z-Z, +1.20D+L+0.20S+E+1.60H Z-Z, +1.20D+L+0.20S+E+1.60H	0.6625	-× +X	Bottom	0.2592	Min Temp %	0.30	11.753	OK
Z-Z, +0.90D+E+0.90H	0.0023	-X	Bottom	0.2592	Min Temp %	0.30	11.753	OK
Z-Z, +0.90D+E+0.90H	0.0	+X	Bottom	0.2592	Min Temp %	0.30	11.753	ŎK
One Way Shear								
Load Combination	Vu @ -X	Vu @	+X VI	u@-Z Vu	1@+Z Vi	u:Max Ph	i Vn Vu / Phi	*Vn Status
+1.40D+1.60H	0.00 ps	i	0.00 psi	0.00 psi	0.00 psi	0.00 psi	82.16 psi	0.00 Ok
+1.20D+0.50Lr+1.60L+1.60H	4.71 ps		4.71 psi	4.71 psi	4.71 psi	4.71 psi	82.16 psi	0.06 Ok
+1.20D+1.60L+0.50S+1.60H	4.71 ps		4.71 psi	4.71 psi	4.71 psi	4.71 psi	82.16 psi	0.06 Ok
+1.20D+1.60Lr+L+1.60H	2.94 ps		2.94 psi	2.94 psi	2.94 psi	2.94 psi	82.16 psi	0.04 Ok
+1.20D+1.60Lr+0.50W+1.60H	0.00 ps		0.00 psi	0.00 psi	0.00 psi	0.00 psi	82.16 psi	0.00 Ok
+1.20D+L+1.60S+1.60H	2.94 ps		2.94 psi	2.94 psi	2.94 psi	2.94 psi	82.16 psi	0.04 Ok
+1.20D+1.60S+0.50W+1.60H	0.00 ps		0.00 psi	0.00 psi	0.00 psi	0.00 psi	82.16 psi	0.00 Ok
+1.20D+0.50Lr+L+W+1.60H	2.94 ps	i	2.94 psi	2.94 psi	2.94 psi	2.94 psi	82.16 psi	0.04 Ok
+1.20D+L+0.50S+W+1.60H	2.94 ps		2.94 psi	2.94 psi	2.94 psi	2.94 psi	82.16 psi	0.04 Ok
+0.90D+W+1.60H	0.00 ps		0.00 psi	0.00 psi	0.00 psi	0.00 psi	82.16 psi	0.00 Ok
+1 20D+L+0 20S+E+1 60H	2 94 ns	i	2 94 nsi	2 94 nsi	2 94 nsi	2 94 nsi	82 16 psi	0.04 Ok

2.94 psi

2.94 psi

2.94 psi

2.94 psi

82.16 psi

2.94 psi

Project Title: Engineer: Project ID: Project Descr:

Printed: 21 JAN 2022, 10:19AM

File: Foundations and Footings.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.17 DHP ENGINEERING

0.04

OK

Lic. # : KW-06004293

DESCRIPTION: F2.0

One Way Shear

One Way Shear									
Load Combination	Vu @ -X	Vu @ +X	Vu @ -Z	Vu @ +	Z	Vu:Max	Phi Vn	Vu / Phi*Vn	Status
+0.90D+E+0.90H Two-Way "Punching" Shear	20.0	si 0.00 j	osi 0.0	10 psi	0.00 psi	0.00 psi	82.16	psi 0.00 All unit	OK s k
Load Combination		Vu		Phi*Vn		Vu / Phi*Vn			Status
+1.40D+1.60H +1.20D+0.50Lr+1.60L+1.60H +1.20D+1.60L+0.50S+1.60H +1.20D+1.60Lr+L+1.60H +1.20D+1.60Lr+0.50W+1.60H +1.20D+L+1.60S+1.60H +1.20D+L+0.50Lr+L+W+1.60H +1.20D+L+0.50S+W+1.60H +1.20D+L+0.50S+W+1.60H +1.20D+L+0.20S+E+1.60H		0.00 psi 22.39 psi 22.39 psi 14.00 psi 14.00 psi 14.00 psi 14.00 psi 14.00 psi 14.00 psi 14.00 psi 14.00 psi 14.00 psi		164.32 psi 164.32 psi		0 0.1363 0.08518 0.08518 0.08518 0.08518 0.08518 0.08518 0.08518			OK OK OK OK OK OK OK OK

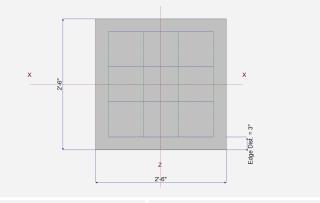
Printed: 21 JAN 2022, 10:19AM File: Foundations and Footings.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.17 DHP ENGINEERING

Lic. # : KW-06004293

DESCRIPTION: F2.5

Code References

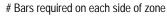
Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : ASCE 7-16

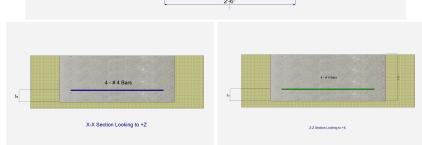

General Information

Material Properties fc : Concrete 28 day strength fy : Rebar Yield Ec : Concrete Elastic Modulus Concrete Density φ Values Flexure	= = =	6 3,12 14	3.0 ksi 0.0 ksi 2.0 ksi 5.0 pcf .90	Soil Design Values Allowable Soil Bearing Increase Bearing By Footing Weight Soil Passive Resistance (for Sliding) Soil/Concrete Friction Coeff.	= = =	1.50 ksf No 250.0 pcf 0.30
Shear Analysis Settings Min Steel % Bending Reinf. Min Allow % Temp Reinf. Min. Overturning Safety Factor	=	0. = = =	750 0.00180 1.0 : 1	Increases based on footing Depth Footing base depth below soil surface Allow press. increase per foot of depth when footing base is below	= = =	1.0 ft ksf ft
Min. Sliding Safety Factor Add Ftg Wt for Soil Pressure Use ftg wt for stability, moments & shears Add Pedestal Wt for Soil Pressure Use Pedestal wt for stability, mom & shear		= : : :	1.0 : 1 Yes Yes No No	Increases based on footing plan dimension Allowable pressure increase per foot of depth when max. length or width is greater than	= =	ksf ft

Dimensions

Width parallel to X-X Axis	=	2.50 ft
Length parallel to Z-Z Axis	=	2.50 ft
Footing Thickness	=	12.0 in


Pedestal dimensions px : parallel to X-X Axis pz : parallel to Z-Z Axis Height	= = =	in in in
Rebar Centerline to Edge of C at Bottom of footing	concrete =	3.0 in



z

Bars parallel to X-X Axis Number of Bars Reinforcing Bar Size	=	#	4 4
Bars parallel to Z-Z Axis Number of Bars	=		4
Reinforcing Bar Size	=	#	4
Bandwidth Distribution Che	ck (ACI 15.4.4.2)		
Direction Requiring Closer S	eparation		
			n/a
# Bars required within zone			n/a
# Bars required on each side		n/a	

Applied Loads

	_	D	Lr	L	S	W	Е	Н
P : Column Load OB : Overburden	= =			8.30				k ksf
M-xx M-zz	=							k-ft k-ft
V-x V-z	= =							k k

Printed: 27 DEC 2021, 4:38PM File: Foundations and Footings.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.17 DHP ENGINEERING

Lic. # : KW-06004293

DESCRIPTION: F2.5

DESIGN SUMMARY

Printed: 27 DEC 2021, 4:38PM

File: Foundations and Footings.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.17 DHP ENGINEERING

DESIGN SU	IMMARY				Design OK
	Min. Ratio	Item	Applied	Capacity	Governing Load Combination
PASS	0.9820	Soil Bearing	1.473 ksf	1.50 ksf	+D+L+H about Z-Z axis
PASS	n/a	Overturning - X-X	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding
PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.1327	Z Flexure (+X)	1.660 k-ft/ft	12.508 k-ft/ft	+1.20D+0.50Lr+1.60L+1.60H
PASS	0.1327	Z Flexure (-X)	1.660 k-ft/ft	12.508 k-ft/ft	+1.20D+0.50Lr+1.60L+1.60H
PASS	0.1327	X Flexure (+Z)	1.660 k-ft/ft	12.508 k-ft/ft	+1.20D+0.50Lr+1.60L+1.60H
PASS	0.1327	X Flexure (-Z)	1.660 k-ft/ft	12.508 k-ft/ft	+1.20D+0.50Lr+1.60L+1.60H
PASS	0.1197	1-way Shear (+X)	9.837 psi	82.158 psi	+1.20D+0.50Lr+1.60L+1.60H
PASS	0.1197	1-way Shear (-X)	9.837 psi	82.158 psi	+1.20D+0.50Lr+1.60L+1.60H
PASS	0.1197	1-way Shear (+Z)	9.837 psi	82.158 psi	+1.20D+0.50Lr+1.60L+1.60H
PASS	0.1197	1-way Shear (-Z)	9.837 psi	82.158 psi	+1.20D+0.50Lr+1.60L+1.60H
PASS	0.2270	2-way Punching	37.299 psi	164.317 psi	+1.20D+0.50Lr+1.60L+1.60H
Detailed Re	sults				

Soil Bearing

Soll Bearing Rotation Axis &		Хесс	Zecc	Act	ual Soil Bearing Stre	ess @ Locat	tion	Actual / Allow
Load Combination	Gross Allowable		(in)	Bottom, -Z	Top, +Z	Left, -X	Right, +X	Ratio
X-X, +D+H	1.50	n/a	0.0	0.1450	0.1450	n/a	n/a	0.097
X-X, +D+L+H	1.50	n/a	0.0	1.473	1.473	n/a	n/a	0.982
X-X, +D+Lr+H	1.50	n/a	0.0	0.1450	0.1450	n/a	n/a	0.097
X-X, +D+S+H	1.50	n/a	0.0	0.1450	0.1450	n/a	n/a	0.097
X-X, +D+0.750Lr+0.750L+H	1.50	n/a	0.0	1.141	1.141	n/a	n/a	0.761
X-X, +D+0.750L+0.750S+H	1.50	n/a	0.0	1.141	1.141	n/a	n/a	0.761
X-X, +D+0.60W+H	1.50	n/a	0.0	0.1450	0.1450	n/a	n/a	0.097
X-X, +D+0.750Lr+0.750L+0.450W+H	1.50	n/a	0.0	1.141	1.141	n/a	n/a	0.761
X-X, +D+0.750L+0.750S+0.450W+H	1.50	n/a	0.0	1.141	1.141	n/a	n/a	0.761
X-X, +0.60D+0.60W+0.60H	1.50	n/a	0.0	0.0870	0.0870	n/a	n/a	0.058
X-X, +D+0.70E+0.60H	1.50	n/a	0.0	0.1450	0.1450	n/a	n/a	0.097
X-X, +D+0.750L+0.750S+0.5250E+H		n/a	0.0	1.141	1.141	n/a	n/a	0.761
X-X, +0.60D+0.70E+H	1.50	n/a	0.0	0.0870	0.0870	n/a	n/a	0.058
Z-Z, +D+H	1.50	0.0	n/a	n/a	n/a	0.1450	0.1450	0.097
Z-Z, +D+L+H	1.50	0.0	n/a	n/a	n/a	1.473	1.473	0.982
Z-Z, +D+Lr+H	1.50	0.0	n/a	n/a	n/a	0.1450	0.1450	0.097
Z-Z, +D+S+H	1.50	0.0	n/a	n/a	n/a	0.1450	0.1450	0.097
Z-Z, +D+0.750Lr+0.750L+H	1.50	0.0	n/a	n/a	n/a	1.141	1.141	0.761
Z-Z, +D+0.750L+0.750S+H	1.50	0.0	n/a	n/a	n/a	1.141	1.141	0.761
Z-Z, +D+0.60W+H	1.50	0.0	n/a	n/a	n/a	0.1450	0.1450	0.097
Z-Z, +D+0.750Lr+0.750L+0.450W+H		0.0	n/a	n/a	n/a	1.141	1.141	0.761
Z-Z, +D+0.750L+0.750S+0.450W+H	1.50	0.0	n/a	n/a	n/a	1.141	1.141	0.761
Z-Z, +0.60D+0.60W+0.60H	1.50	0.0	n/a	n/a	n/a	0.0870	0.0870	0.058
Z-Z, +D+0.70E+0.60H	1.50	0.0	n/a	n/a	n/a	0.1450	0.1450	0.097
Z-Z, +D+0.750L+0.750S+0.5250E+H	1.50	0.0	n/a	n/a	n/a	1.141	1.141	0.761
Z-Z, +0.60D+0.70E+H	1.50	0.0	n/a	n/a	n/a	0.0870	0.0870	0.058
Overturning Stability								
Rotation Axis &								
Load Combination		Overturnin	g Moment		Resisting Moment	Stab	oility Ratio	Status
Footing Has NO Overturning								
Sliding Stability								All units k
Force Application Axis								
Load Combination		Sliding	Force		Resisting Force	Stat	oility Ratio	Status
Footing Has NO Sliding								

Footing Has NO Sliding

Title Block Line 1 You can change this area using the "Settings" menu item and then using the "Printing & Title Block" selection. Title Block Line 6

General Footing

Lic. # : KW-06004293

DESCRIPTION: F2.5

Footing Flexure

+0.90D+W+1.60H

+1.20D+L+0.20S+E+1.60H

0.00 psi

6.15 psi

82.16 psi

82.16 psi

0.00

0.07

ОК

OK

Fooling Flexule								
Flexure Axis & Load Combination	Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	Actual As in^2	Phi*Mn k-ft	Status
X-X, +1.40D+1.60H	0.0	.7	Bottom	0.2592	Min Temp %	0.320	12.508	ОК
X-X, +1.40D+1.60H X-X, +1.40D+1.60H	0.0	+Z -Z	Bottom	0.2592	Min Temp %	0.320	12.508	OK
X-X, +1.40D+1.00H X-X, +1.20D+0.50Lr+1.60L+1.60H	1.660					0.320	12.508	OK
		+Z	Bottom	0.2592	Min Temp %	0.320		
X-X, +1.20D+0.50Lr+1.60L+1.60H	1.660	-Z	Bottom	0.2592	Min Temp %	0.320	12.508	OK
X-X, +1.20D+1.60L+0.50S+1.60H	1.660	+Z	Bottom	0.2592	Min Temp %	0.320	12.508	OK
X-X, +1.20D+1.60L+0.50S+1.60H	1.660	-Z	Bottom	0.2592	Min Temp %	0.320	12.508	OK
X-X, +1.20D+1.60Lr+L+1.60H	1.038	+Z	Bottom	0.2592	Min Temp %	0.320	12.508	OK
X-X, +1.20D+1.60Lr+L+1.60H	1.038	-Z	Bottom	0.2592	Min Temp %	0.320	12.508	OK
X-X, +1.20D+1.60Lr+0.50W+1.60H	0.0	+Z	Bottom	0.2592	Min Temp %	0.320	12.508	OK
X-X, +1.20D+1.60Lr+0.50W+1.60H	0.0	-Z	Bottom	0.2592	Min Temp %	0.320	12.508	OK
X-X, +1.20D+L+1.60S+1.60H	1.038	+Z	Bottom	0.2592	Min Temp %	0.320	12.508	OK
X-X, +1.20D+L+1.60S+1.60H	1.038	-Z	Bottom	0.2592	Min Temp %	0.320	12.508	OK
X-X, +1.20D+1.60S+0.50W+1.60H	0.0	+Z	Bottom	0.2592	Min Temp %	0.320	12.508	OK
X-X, +1.20D+1.60S+0.50W+1.60H	0.0	-Z	Bottom	0.2592	Min Temp %	0.320	12.508	OK
X-X, +1.20D+0.50Lr+L+W+1.60H	1.038	+Z	Bottom	0.2592	Min Temp %	0.320	12.508	OK
X-X, +1.20D+0.50Lr+L+W+1.60H	1.038	-Z	Bottom	0.2592	Min Temp %	0.320	12.508	OK
X-X, +1.20D+L+0.50S+W+1.60H	1.038	+Z	Bottom	0.2592	Min Temp %	0.320	12.508	OK
X-X, +1.20D+L+0.50S+W+1.60H	1.038	-Z	Bottom	0.2592	Min Temp %	0.320	12.508	OK
X-X, +0.90D+W+1.60H	0.0	+Z	Bottom	0.2592	Min Temp %	0.320	12.508	OK
X-X, +0.90D+W+1.60H	0.0	-Z	Bottom	0.2592	Min Temp %	0.320	12.508	ŎK
X-X, +1.20D+L+0.20S+E+1.60H	1.038	+Ž	Bottom	0.2592	Min Temp %	0.320	12.508	ŎK
X-X, +1.20D+L+0.20S+E+1.60H	1.038	-Z	Bottom	0.2592	Min Temp %	0.320	12.508	ÖK
X-X, +0.90D+E+0.90H	0.0	+Z	Bottom	0.2592	Min Temp %	0.320	12.508	OK OK
X-X, +0.90D+E+0.90H	0.0	-Z	Bottom	0.2592	Min Temp %	0.320	12.508	OK
Z-Z, +1.40D+1.60H	0.0	-Z -X	Bottom	0.2592	Min Temp %	0.320	12.508	OK
Z-Z, +1.40D+1.60H	0.0	-x +X	Bottom	0.2592	Min Temp %	0.320	12.508	OK
Z-Z, +1.40D+1.00H Z-Z, +1.20D+0.50Lr+1.60L+1.60H	1.660			0.2092	Min Temp %	0.320	12.508	
		-X	Bottom	0.2592		0.320		OK
Z-Z, +1.20D+0.50Lr+1.60L+1.60H	1.660	+X	Bottom	0.2592	Min Temp %	0.320	12.508	OK
Z-Z, +1.20D+1.60L+0.50S+1.60H	1.660	-X	Bottom	0.2592	Min Temp %	0.320	12.508	OK
Z-Z, +1.20D+1.60L+0.50S+1.60H	1.660	+X	Bottom	0.2592	Min Temp %	0.320	12.508	OK
Z-Z, +1.20D+1.60Lr+L+1.60H	1.038	-X	Bottom	0.2592	Min Temp %	0.320	12.508	OK
Z-Z, +1.20D+1.60Lr+L+1.60H	1.038	+X	Bottom	0.2592	Min Temp %	0.320	12.508	OK
Z-Z, +1.20D+1.60Lr+0.50W+1.60H	0.0	-X	Bottom	0.2592	Min Temp %	0.320	12.508	OK
Z-Z, +1.20D+1.60Lr+0.50W+1.60H	0.0	+X	Bottom	0.2592	Min Temp %	0.320	12.508	OK
Z-Z, +1.20D+L+1.60S+1.60H	1.038	-X	Bottom	0.2592	Min Temp %	0.320	12.508	OK
Z-Z, +1.20D+L+1.60S+1.60H	1.038	+X	Bottom	0.2592	Min Temp %	0.320	12.508	OK
Z-Z, +1.20D+1.60S+0.50W+1.60H	0.0	-X	Bottom	0.2592	Min Temp %	0.320	12.508	OK
Z-Z, +1.20D+1.60S+0.50W+1.60H	0.0	+X	Bottom	0.2592	Min Temp %	0.320	12.508	OK
Z-Z, +1.20D+0.50Lr+L+W+1.60H	1.038	-X	Bottom	0.2592	Min Temp %	0.320	12.508	OK
Z-Z, +1.20D+0.50Lr+L+W+1.60H	1.038	+X	Bottom	0.2592	Min Temp %	0.320	12.508	OK
Z-Z, +1.20D+L+0.50S+W+1.60H	1.038	-X	Bottom	0.2592	Min Temp %	0.320	12.508	OK
Z-Z, +1.20D+L+0.50S+W+1.60H	1.038	+X	Bottom	0.2592	Min Temp %	0.320	12.508	OK
Z-Z, +0.90D+W+1.60H	0.0	-X	Bottom	0.2592	Min Temp %	0.320	12.508	OK
Z-Z, +0.90D+W+1.60H	0.0	+X	Bottom	0.2592	Min Temp %	0.320	12.508	ŎK
Z-Z, +1.20D+L+0.20S+E+1.60H	1.038	-X	Bottom	0.2592	Min Temp %	0.320	12.508	ŎK
Z-Z, +1.20D+L+0.20S+E+1.60H	1.038	+X	Bottom	0.2592	Min Temp %	0.320	12.508	ŎK
Z-Z, +0.90D+E+0.90H	0.0	-X	Bottom	0.2592	Min Temp %	0.320	12.508	ÖK
Z-Z, +0.90D+E+0.90H	0.0	+X	Bottom	0.2592	Min Temp %	0.320	12.508	OK
One Way Shear	0.0	ŦΛ	Dollom	0.2372		0.320	12.300	UK
Load Combination	Vu @ -X	Vu @	+X Vu@	₽-Z Vu		:Max Phi		*Vn Status
+1.40D+1.60H	0.00 ps		0.00 psi	0.00 psi	0.00 psi	0.00 psi	82.16 psi	0.00 OK
+1.20D+0.50Lr+1.60L+1.60H	9.84 ps	i	9.84 psi	9.84 psi	9.84 psi	9.84 psi	82.16 psi	0.12 OK
+1.20D+1.60L+0.50S+1.60H	9.84 ps	i	9.84 psi	9.84 psi	9.84 psi	9.84 psi	82.16 psi	0.12 OK
+1.20D+1.60Lr+L+1.60H	6.15 ps		6.15 psi	6.15 psi	6.15 psi	6.15 psi	82.16 psi	0.07 OK
+1.20D+1.60Lr+0.50W+1.60H	0.00 ps		0.00 psi	0.00 psi	0.00 psi	0.00 psi	82.16 psi	0.00 OK
							•	
+1.20D+L+1.60S+1.60H	6.15 ps		6.15 psi	6.15 psi	6.15 psi	6.15 psi	82.16 psi	0.07 OK
+1.20D+1.60S+0.50W+1.60H	2q 00.0		0.00 psi	0.00 psi	0.00 psi	0.00 psi	82.16 psi	0.00 OK
+1.20D+0.50Lr+L+W+1.60H	6.15 ps		6.15 psi	6.15 psi	6.15 psi	6.15 psi	82.16 psi	0.07 OK
+1.20D+L+0.50S+W+1.60H	6.15 ps		6.15 psi	6.15 psi	6.15 psi	6.15 psi	82.16 psi	0.07 OK
	0.00 pc	:	0.00 pci	0.00 pci	0.00 pci	0.00 pci	00 14 pci	0.00 01

Printed: 27 DEC 2021, 4:38PM

File: Foundations and Footings.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.17 DHP ENGINEERING

Lic. # : KW-06004293

DESCRIPTION: F2.5

One Way Shear

One Way Shear									
Load Combination	Vu @ -X	Vu @ +X	Vu @ -Z	Vu @ +Z	Vu:	Max	Phi Vn	Vu / Phi*Vn	Status
+0.90D+E+0.90H Two-Way "Punching" Shear	eq 00.0	si 0.00 j	osi 0.0	0 psi 0).00 psi	0.00 psi	82.16	psi 0.00 All unit	OK s k
Load Combination		Vu		Phi*Vn		Vu / Phi*Vn			Status
+1.40D+1.60H +1.20D+0.50Lr+1.60L+1.60H +1.20D+1.60L+0.50S+1.60H +1.20D+1.60Lr+L+1.60H +1.20D+1.60Lr+0.50W+1.60H +1.20D+L+1.60S+1.60H +1.20D+L+0.50Lr+L+W+1.60H +1.20D+L+0.50S+W+1.60H +0.90D+W+1.60H +1.20D+L+0.20S+E+1.60H		0.00 psi 37.30 psi 37.30 psi 23.31 psi 0.00 psi 23.31 psi 23.31 psi 23.31 psi 23.31 psi 0.00 psi 23.31 psi 0.00 psi		164.32 psi 164.32 psi		0 0.227 0.227 0.1419 0 0.1419 0.1419 0.1419 0.1419			ok ok ok ok ok ok ok ok ok

Printed: 27 DEC 2021, 4:38PM File: Foundations and Footings.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.17 DHP ENGINEERING

Lic. # : KW-06004293

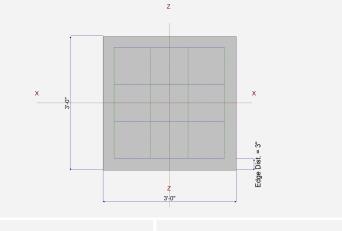
DESCRIPTION: F3.0

Code References

Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : ASCE 7-16

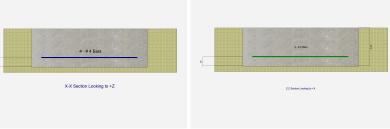
General Information

Material Pro	perties					So
f'c : Concrete	28 day strength		=	3	3.0 ksi	
fy : Rebar Yie	eld	=	60).0 ksi		
	e Elastic Modulus		=		2.0 ksi	
Concrete De	nsity		=	145	5.0 pcf	
φ Values	Flexure		=	0.	90	
	Shear		=	0.7	50	Ind
Analysis Set	tings					III
Min Steel %	Bending Reinf.			=		
Min Allow %	Temp Reinf.			=	0.00180	
Min. Overturr	ning Safety Factor			=	1.0 : 1	
Min. Sliding S	Safety Factor			=	1.0 : 1	Ind
Add Ftg Wt fo	or Soil Pressure			:	Yes	
Use ftg wt for	stability, moments & s		:	Yes		
Add Pedesta	Wt for Soil Pressure		:	No		
Use Pedesta	l wt for stability, mom &	& shear		:	No	


	Soil Design Values Allowable Soil Bearing Increase Bearing By Footing Weight Soil Passive Resistance (for Sliding) Soil/Concrete Friction Coeff.	= = =	1.50 ksf No 250.0 pcf 0.30
1	Increases based on footing Depth Footing base depth below soil surface Allow press. increase per foot of depth when footing base is below	= = =	1.0 ft ksf ft
1	Increases based on footing plan dimension Allowable pressure increase per foot of depth		
	when max. length or width is greater than	=	ksf
	When max longer of Water lo grouter and	=	ft

Project Title: Engineer: Project ID: Project Descr:

Dimensions


Width parallel to X-X Axis	=	3.0 ft
Length parallel to Z-Z Axis	=	3.0 ft
Footing Thickness	=	12.0 in

Rebar Centerline to Edge of Concrete at Bottom of footing = 3.0 in	Pedestal dimensions px : parallel to X-X Axis pz : parallel to Z-Z Axis Height	= = =	in in in
	Rebar Centerline to Edge of C	Concrete	

Reinforcing

Bars parallel to X-X Axis Number of Bars Reinforcing Bar Size	=	#	4.0 4
Bars parallel to Z-Z Axis Number of Bars Reinforcing Bar Size Bandwidth Distribution Che Direction Requiring Closer S		#	4.0 4
# Bars required within zone # Bars required on each side	of zone		n/a n/a n/a

Applied Loads

		D	Lr	L	S	W	E	Н
P : Column Load OB : Overburden	= =			12.0				k ksf
M-xx M-zz	= =							k-ft k-ft
V-x V-z	=							k k

Printed: 27 DEC 2021, 4:39PM File: Foundations and Footings.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.17 DHP ENGINEERING

Lic. # : KW-06004293

DESCRIPTION: F3.0

DESIGN SUMMARY

Printed: 27 DEC 2021, 4:39PM

File: Foundations and Footings.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.17 DHP ENGINEERING

DESIGN SUMMARY Des									
	Min. Ratio	Item	Applied	Capacity	Governing Load Combination				
PASS	0.9853	Soil Bearing	1.478 ksf	1.50 ksf	+D+L+H about Z-Z axis				
PASS	n/a	Overturning - X-X	0.0 k-ft	0.0 k-ft	No Overturning				
PASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning				
PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding				
PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding				
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift				
PASS	0.2289	Z Flexure (+X)	2.40 k-ft/ft	10.486 k-ft/ft	+1.20D+0.50Lr+1.60L+1.60H				
PASS	0.2289	Z Flexure (-X)	2.40 k-ft/ft	10.486 k-ft/ft	+1.20D+0.50Lr+1.60L+1.60H				
PASS	0.2289	X Flexure (+Z)	2.40 k-ft/ft	10.486 k-ft/ft	+1.20D+0.50Lr+1.60L+1.60H				
PASS	0.2289	X Flexure (-Z)	2.40 k-ft/ft	10.486 k-ft/ft	+1.20D+0.50Lr+1.60L+1.60H				
PASS	0.1803	1-way Shear (+X)	14.815 psi	82.158 psi	+1.20D+0.50Lr+1.60L+1.60H				
PASS	0.1803	1-way Shear (-X)	14.815 psi	82.158 psi	+1.20D+0.50Lr+1.60L+1.60H				
PASS	0.1803	1-way Shear (+Z)	14.815 psi	82.158 psi	+1.20D+0.50Lr+1.60L+1.60H				
PASS	0.1803	1-way Shear (-Z)	14.815 psi	82.158 psi	+1.20D+0.50Lr+1.60L+1.60H				
PASS	0.3381	2-way Punching	55.556 psi	164.317 psi	+1.20D+0.50Lr+1.60L+1.60H				
Detailed Re	sults								

Soil Bearing

Soil Bearing			7					
Rotation Axis &		Xecc	Zecc	Act	ual Soil Bearing Stre	ess @ Loca		Actual / Allow
Load Combination	Gross Allowable		(in)	Bottom, -Z	Top, +Z	Left, -X	Right, +X	Ratio
X-X, +D+H	1.50	n/a	0.0	0.1450	0.1450	n/a	n/a	0.097
X-X, +D+L+H	1.50	n/a	0.0	1.478	1.478	n/a	n/a	0.985
X-X, +D+Lr+H	1.50	n/a	0.0	0.1450	0.1450	n/a	n/a	0.097
X-X, +D+S+H	1.50	n/a	0.0	0.1450	0.1450	n/a	n/a	0.097
X-X, +D+0.750Lr+0.750L+H	1.50	n/a	0.0	1.145	1.145	n/a	n/a	0.763
X-X, +D+0.750L+0.750S+H	1.50	n/a	0.0	1.145	1.145	n/a	n/a	0.763
X-X, +D+0.60W+H	1.50	n/a	0.0	0.1450	0.1450	n/a	n/a	0.097
X-X, +D+0.750Lr+0.750L+0.450W+H		n/a	0.0	1.145	1.145	n/a	n/a	0.763
X-X, +D+0.750L+0.750S+0.450W+H	1.50	n/a	0.0	1.145	1.145	n/a	n/a	0.763
X-X, +0.60D+0.60W+0.60H	1.50	n/a	0.0	0.0870	0.0870	n/a	n/a	0.058
X-X, +D+0.70E+0.60H	1.50	n/a	0.0	0.1450	0.1450	n/a	n/a	0.097
X-X, +D+0.750L+0.750S+0.5250E+H	1.50	n/a	0.0	1.145	1.145	n/a	n/a	0.763
X-X, +0.60D+0.70E+H	1.50	n/a	0.0	0.0870	0.0870	n/a	n/a	0.058
Z-Z, +D+H	1.50	0.0	n/a	n/a	n/a	0.1450	0.1450	0.097
Z-Z, +D+L+H	1.50	0.0	n/a	n/a	n/a	1.478	1.478	0.985
Z-Z, +D+Lr+H	1.50	0.0	n/a	n/a	n/a	0.1450	0.1450	0.097
Z-Z, +D+S+H	1.50	0.0	n/a	n/a	n/a	0.1450	0.1450	0.097
Z-Z, +D+0.750Lr+0.750L+H	1.50	0.0	n/a	n/a	n/a	1.145	1.145	0.763
Z-Z, +D+0.750L+0.750S+H	1.50	0.0	n/a	n/a	n/a	1.145	1.145	0.763
Z-Z, +D+0.60W+H	1.50	0.0	n/a	n/a	n/a	0.1450	0.1450	0.097
Z-Z, +D+0.750Lr+0.750L+0.450W+H	l 1.50	0.0	n/a	n/a	n/a	1.145	1.145	0.763
Z-Z, +D+0.750L+0.750S+0.450W+H	1.50	0.0	n/a	n/a	n/a	1.145	1.145	0.763
Z-Z, +0.60D+0.60W+0.60H	1.50	0.0	n/a	n/a	n/a	0.0870	0.0870	0.058
Z-Z, +D+0.70E+0.60H	1.50	0.0	n/a	n/a	n/a	0.1450	0.1450	0.097
Z-Z, +D+0.750L+0.750S+0.5250E+H	1.50	0.0	n/a	n/a	n/a	1.145	1.145	0.763
Z-Z, +0.60D+0.70E+H	1.50	0.0	n/a	n/a	n/a	0.0870	0.0870	0.058
Overturning Stability								
Rotation Axis &								
Load Combination		Overturnii	ng Moment		Resisting Moment	Stat	oility Ratio	Status
Footing Has NO Overturning								
Sliding Stability								All units k
Force Application Axis								
Load Combination		Sliding	g Force		Resisting Force	Stat	oility Ratio	Status
Footing Has NO Sliding								

Footing Has NO Sliding

Title Block Line 1 You can change this area using the "Settings" menu item and then using the "Printing & Title Block" selection. Title Block Line 6

General Footing

Lic. # : KW-06004293

DESCRIPTION: F3.0

+1.20D+L+0.20S+E+1.60H

+0.90D+W+1.60H

Footing Flexure

Flexure Axis & Load Combination k-ft		Surface	in^2	in^2	in^2	k-ft		Status
X-X, +1.40D+1.60H 0.0	+Z	Bottom	0.2592	Min Temp %	0.2667	10.48	6	ОК
X-X, +1.40D+1.60H 0.0	-Z	Bottom	0.2592	Min Temp %	0.2667	10.48		OK
X-X, +1.20D+0.50Lr+1.60L+1.60H 2.40	+Z	Bottom	0.2592	Min Temp %	0.2667	10.48		OK
X-X, +1.20D+0.50Lr+1.60L+1.60H 2.40	-Z	Bottom	0.2592	Min Temp %	0.2667	10.48		OK
X-X, +1.20D+1.60L+0.50S+1.60H 2.40	+Z	Bottom	0.2592	Min Temp %	0.2667	10.48		OK
X-X, +1.20D+1.60L+0.50S+1.60H 2.40	-Z	Bottom	0.2592	Min Temp %	0.2667	10.48		OK
X-X, +1.20D+1.60Lr+L+1.60H 1.50	+Z	Bottom	0.2592	Min Temp %	0.2667	10.48		OK
X-X, +1.20D+1.60Lr+L+1.60H 1.50	-Z	Bottom	0.2592	Min Temp %	0.2667	10.48		OK
X-X, +1.20D+1.60Lr+0.50W+1.60H 0.0 X-X, +1.20D+1.60Lr+0.50W+1.60H 0.0	+Z -Z	Bottom Bottom	0.2592 0.2592	Min Temp % Min Temp %	0.2667 0.2667	10.48 10.48		OK OK
X-X, +1.20D+1.60E1+0.30W+1.60H 0.0	-z +Z	Bottom	0.2592	Min Temp %	0.2667	10.48		OK
X-X, +1.20D+L+1.60S+1.60H 1.50	-Z	Bottom	0.2592	Min Temp %	0.2667	10.48		OK
X-X, +1.20D+1.60S+0.50W+1.60H 0.0	+Ž	Bottom	0.2592	Min Temp %	0.2667	10.48		ÖK
X-X, +1.20D+1.60S+0.50W+1.60H 0.0	-Z	Bottom	0.2592	Min Temp %	0.2667	10.48		OK
X-X, +1.20D+0.50Lr+L+W+1.60H 1.50	+Z	Bottom	0.2592	Min Temp %	0.2667	10.48	6	OK
X-X, +1.20D+0.50Lr+L+W+1.60H 1.50	-Z	Bottom	0.2592	Min Temp %	0.2667	10.48	6	OK
X-X, +1.20D+L+0.50S+W+1.60H 1.50	+Z	Bottom	0.2592	Min Temp %	0.2667	10.48		OK
X-X, +1.20D+L+0.50S+W+1.60H 1.50	-Z	Bottom	0.2592	Min Temp %	0.2667	10.48		OK
X-X, +0.90D+W+1.60H 0.0	+Z	Bottom	0.2592	Min Temp %	0.2667	10.48		OK
X-X, +0.90D+W+1.60H 0.0	-Z	Bottom	0.2592	Min Temp %	0.2667	10.48		OK
X-X, +1.20D+L+0.20S+E+1.60H 1.50 X-X, +1.20D+L+0.20S+E+1.60H 1.50	+Z -Z	Bottom	0.2592 0.2592	Min Temp % Min Temp %	0.2667 0.2667	10.48 10.48		OK
X-X, +1.20D+L+0.203+E+1.00H 1.50 X-X, +0.90D+E+0.90H 0.0	-z +Z	Bottom Bottom	0.2592	Min Temp %	0.2667	10.48		OK OK
X-X, +0.90D+E+0.90H 0.0	-Z	Bottom	0.2592	Min Temp %	0.2667	10.48		OK
Z-Z, +1.40D+1.60H 0.0	-X	Bottom	0.2592	Min Temp %	0.2667	10.48		OK
Z-Z, +1.40D+1.60H 0.0	+X	Bottom	0.2592	Min Temp %	0.2667	10.48		OK
Z-Z, +1.20D+0.50Lr+1.60L+1.60H 2.40	-X	Bottom	0.2592	Min Temp %	0.2667	10.48		ÖK
Z-Z, +1.20D+0.50Lr+1.60L+1.60H 2.40	+X	Bottom	0.2592	Min Temp %	0.2667	10.48	6	OK
Z-Z, +1.20D+1.60L+0.50S+1.60H 2.40	-X	Bottom	0.2592	Min Temp %	0.2667	10.48		OK
Z-Z, +1.20D+1.60L+0.50S+1.60H 2.40	+X	Bottom	0.2592	Min Temp %	0.2667	10.48		OK
Z-Z, +1.20D+1.60Lr+L+1.60H 1.50	-X	Bottom	0.2592	Min Temp %	0.2667	10.48		OK
Z-Z, +1.20D+1.60Lr+L+1.60H 1.50	+X	Bottom	0.2592	Min Temp %	0.2667	10.48		OK
Z-Z, +1.20D+1.60Lr+0.50W+1.60H 0.0	-X	Bottom	0.2592	Min Temp %	0.2667	10.48		OK
Z-Z, +1.20D+1.60Lr+0.50W+1.60H 0.0	+X V	Bottom	0.2592	Min Temp %	0.2667	10.48		OK
Z-Z, +1.20D+L+1.60S+1.60H 1.50 Z-Z, +1.20D+L+1.60S+1.60H 1.50	-X +X	Bottom Bottom	0.2592 0.2592	Min Temp % Min Temp %	0.2667 0.2667	10.48 10.48		OK OK
Z-Z, +1.20D+L+1.60S+1.60H 1.50 Z-Z, +1.20D+1.60S+0.50W+1.60H 0.0	-X	Bottom	0.2592	Min Temp %	0.2667	10.48		OK
Z-Z, +1.20D+1.60S+0.50W+1.60H 0.0	+X	Bottom	0.2592	Min Temp %	0.2667	10.48		OK
Z-Z, +1.20D+0.50Lr+L+W+1.60H 1.50	-X	Bottom	0.2592	Min Temp %	0.2667	10.48		ÖK
Z-Z, +1.20D+0.50Lr+L+W+1.60H 1.50	+X	Bottom	0.2592	Min Temp %	0.2667	10.48		OK
Z-Z, +1.20D+L+0.50S+W+1.60H 1.50	-X	Bottom	0.2592	Min Temp %	0.2667	10.48	6	OK
Z-Z, +1.20D+L+0.50S+W+1.60H 1.50	+X	Bottom	0.2592	Min Temp %	0.2667	10.48		OK
Z-Z, +0.90D+W+1.60H 0.0	-X	Bottom	0.2592	Min Temp %	0.2667	10.48		OK
Z-Z, +0.90D+W+1.60H 0.0	+X	Bottom	0.2592	Min Temp %	0.2667	10.48	-	OK
Z-Z, +1.20D+L+0.20S+E+1.60H 1.50	-X	Bottom	0.2592	Min Temp %	0.2667	10.48		OK
Z-Z, +1.20D+L+0.20S+E+1.60H 1.50	+X	Bottom	0.2592	Min Temp %	0.2667	10.48		OK
Z-Z, +0.90D+E+0.90H 0.0	-X +X	Bottom	0.2592	Min Temp %	0.2667	10.48		OK
Z-Z, +0.90D+E+0.90H 0.0 One Way Shear	+7	Bottom	0.2592	Min Temp %	0.2667	10.48	0	ОК
-	Vu@+	V Vu	@-Z Vu	@ +Z Vi	ı:Max Phi	Vp Viv/D	h:*\/m	Ctatua
								Status
+1.40D+1.60H 0.00 psi		0.00 psi	0.00 psi	0.00 psi	0.00 psi	82.16 psi	0.00	OK
+1.20D+0.50Lr+1.60L+1.60H 14.82 psi		14.82 psi	14.82 psi	14.82 psi	14.82 psi	82.16 psi	0.18	OK
+1.20D+1.60L+0.50S+1.60H 14.82 psi		14.82 psi	14.82 psi	14.82 psi	14.82 psi	82.16 psi	0.18	OK
+1.20D+1.60Lr+L+1.60H 9.26 psi		9.26 psi	9.26 psi	9.26 psi	9.26 psi	82.16 psi	0.11	OK
+1.20D+1.60Lr+0.50W+1.60H 0.00 psi		0.00 psi	0.00 psi	0.00 psi	0.00 psi	82.16 psi	0.00	OK
+1.20D+L+1.60S+1.60H 9.26 psi		9.26 psi	9.26 psi	9.26 psi	9.26 psi	82.16 psi	0.11	OK
+1.20D+1.60S+0.50W+1.60H 0.00 psi		0.00 psi	0.00 psi	0.00 psi	0.00 psi	82.16 psi	0.00	OK
+1.20D+0.50Lr+L+W+1.60H 9.26 psi		9.26 psi	9.26 psi	9.26 psi	9.26 psi	82.16 psi	0.11	OK
+1.20D+L+0.50S+W+1.60H 9.26 psi		9.26 psi	9.26 psi	9.26 psi	9.26 psi	82.16 psi 82.16 psi	0.11	OK

0.00 psi

9.26 psi

82.16 psi

82.16 psi

0.00

0.11

ОК

OK

Printed: 27 DEC 2021, 4:39PM

File: Foundations and Footings.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.17 DHP ENGINEERING

Lic. # : KW-06004293

DESCRIPTION: F3.0

One Way Shear

Load Combination	Vu @ -X	Vu @ +X	Vu @ -Z	Vu @	+Z	Vu:Max	Phi Vn	Vu / Phi*Vn	Status
+0.90D+E+0.90H Two-Way "Punching" Shear	eq 00.0	si 0.00 ps	i 0.00) psi	0.00 psi	0.00 psi	82.16	5 psi 0.00 All uni	
Load Combination		Vu	Р	hi*Vn		Vu / Phi*Vn			Status
+1.40D+1.60H +1.20D+0.50Lr+1.60L+1.60H +1.20D+1.60L+0.50S+1.60H +1.20D+1.60Lr+L+1.60H +1.20D+1.60Lr+0.50W+1.60H +1.20D+1.60S+0.50W+1.60H +1.20D+0.50Lr+L+W+1.60H +1.20D+L+0.50S+W+1.60H +0.90D+W+1.60H +1.20D+L+0.20S+E+1.60H +0.90D+E+0.90H		0.00 psi 55.56 psi 55.56 psi 34.72 psi 0.00 psi 34.72 psi 0.00 psi 34.72 psi 34.72 psi 0.00 psi 34.72 psi 0.00 psi 34.72 psi 0.00 psi		164.32 psi 164.32 psi		0 0.3381 0.2113 0 0.2113 0 0.2113 0.2113 0.2113 0.2113			OK OK OK OK OK OK OK OK

Printed: 27 DEC 2021, 4:39PM File: Foundations and Footings.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.17 DHP ENGINEERING

Lic. # : KW-06004293

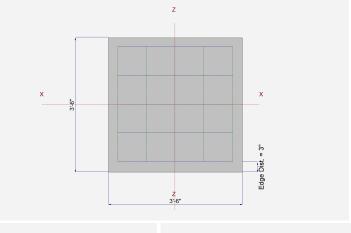
DESCRIPTION: F3.5

Code References

Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : ASCE 7-16

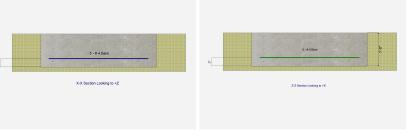
General Information

Material Properties fc : Concrete 28 day strength fy : Rebar Yield Ec : Concrete Elastic Modulus Concrete Density	= = =	60 3,122	3.0 ksi 0.0 ksi 2.0 ksi 5.0 pcf	Soil Design Values Allowable Soil Bearing Increase Bearing By Fo Soil Passive Resistance Soil/Concrete Friction C
ϕ Values Flexure	=		90	
' Shear Analysis Settings Min Steel % Bending Reinf. Min Allow % Temp Reinf.	=	0.7 = =	0.00180	Increases based on footi Footing base depth belo Allow press. increase p when footing base is
Min. Overturning Safety Factor Min. Sliding Safety Factor Add Ftg Wt for Soil Pressure		= = :	1.0 : 1 1.0 : 1 Yes	Increases based on footi Allowable pressure incre
Use ftg wt for stability, moments & shears Add Pedestal Wt for Soil Pressure		:	Yes No	when max. length or wid
Use Pedestal wt for stability, mom & shear		:	No	


	Allowable Soil Bearing Increase Bearing By Footing Weight Soil Passive Resistance (for Sliding) Soil/Concrete Friction Coeff.	= = =	1.50 ksf No 250.0 pcf 0.30	
: 1	Increases based on footing Depth Footing base depth below soil surface Allow press. increase per foot of depth when footing base is below	= = =	1.0 ft ksf ft	
1	Increases based on footing plan dimension Allowable pressure increase per foot of depth			
	when max. length or width is greater than	=	ksf	
	mon max longer of matrix groater than	=	ft	

Project Title: Engineer: Project ID: Project Descr:

Dimensions


Width parallel to X-X Axis	=	3.50 ft
Length parallel to Z-Z Axis	=	3.50 ft
Footing Thickness	=	12.0 in

Pedestal dimensions px : parallel to X-X Axis pz : parallel to Z-Z Axis Height	= = =	in in in
Rebar Centerline to Edge of C at Bottom of footing	oncrete =	3.0 in

Reinforcing

Bars parallel to X-X Axis Number of Bars Reinforcing Bar Size	=	#	5.0 4
Bars parallel to Z-Z Axis Number of Bars Reinforcing Bar Size Bandwidth Distribution Che Direction Requiring Closer S		#	5.0 4
# Bars required within zone # Bars required on each side	of zone		n/a n/a n/a

Applied Loads

	_	D	Lr	L	S	W	E	Н
P : Column Load OB : Overburden	= =			16.30				k ksf
M-xx M-zz	= =							k-ft k-ft
V-x V-z	= =							k k

Printed: 27 DEC 2021, 4:40PM File: Foundations and Footings.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.17 DHP ENGINEERING

Lic. # : KW-06004293

DESCRIPTION: F3.5

DESIGN SUMMARY

Printed: 27 DEC 2021, 4:40PM

File: Foundations and Footings.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.17 DHP ENGINEERING

DESIGN SL	IMMARY				Design OK
	Min. Ratio	Item	Applied	Capacity	Governing Load Combination
PASS	0.9840	Soil Bearing	1.476 ksf	1.50 ksf	+D+L+H about Z-Z axis
PASS	n/a	Overturning - X-X	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding
PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.2908	Z Flexure (+X)	3.260 k-ft/ft	11.211 k-ft/ft	+1.20D+0.50Lr+1.60L+1.60H
PASS	0.2908	Z Flexure (-X)	3.260 k-ft/ft	11.211 k-ft/ft	+1.20D+0.50Lr+1.60L+1.60H
PASS	0.2908	X Flexure (+Z)	3.260 k-ft/ft	11.211 k-ft/ft	+1.20D+0.50Lr+1.60L+1.60H
PASS	0.2908	X Flexure (-Z)	3.260 k-ft/ft	11.211 k-ft/ft	+1.20D+0.50Lr+1.60L+1.60H
PASS	0.2435	1-way Shear (+X)	20.008 psi	82.158 psi	+1.20D+0.50Lr+1.60L+1.60H
PASS	0.2435	1-way Shear (-X)	20.008 psi	82.158 psi	+1.20D+0.50Lr+1.60L+1.60H
PASS	0.2435	1-way Shear (+Z)	20.008 psi	82.158 psi	+1.20D+0.50Lr+1.60L+1.60H
PASS	0.2435	1-way Shear (-Z)	20.008 psi	82.158 psi	+1.20D+0.50Lr+1.60L+1.60H
PASS	0.4662	2-way Punching	76.598 psi	164.317 psi	+1.20D+0.50Lr+1.60L+1.60H
Detailed Re	sults				

Soil Bearing

Soll Bearing Rotation Axis &		Xecc	Zecc	Act	ual Soil Bearing Stre	ss@loca	tion	Actual / Allow
Load Combination	Gross Allowable		(in)	Bottom, -Z	Top, +Z	Left, -X	Right, +X	Ratio
X-X, +D+H	1.50	n/a	0.0	0.1450	0.1450	n/a	n/a	0.097
X-X, +D+L+H	1.50	n/a	0.0	1.476	1.476	n/a	n/a	0.984
X-X, +D+Lr+H	1.50	n/a	0.0	0.1450	0.1450	n/a	n/a	0.097
X-X, +D+S+H	1.50	n/a	0.0	0.1450	0.1450	n/a	n/a	0.097
X-X, +D+0.750Lr+0.750L+H	1.50	n/a	0.0	1.143	1.143	n/a	n/a	0.762
X-X, +D+0.750L+0.750S+H	1.50	n/a	0.0	1.143	1.143	n/a	n/a	0.762
X-X, +D+0.60W+H	1.50	n/a	0.0	0.1450	0.1450	n/a	n/a	0.097
X-X, +D+0.750Lr+0.750L+0.450W+H	1.50	n/a	0.0	1.143	1.143	n/a	n/a	0.762
X-X, +D+0.750L+0.750S+0.450W+H		n/a	0.0	1.143	1.143	n/a	n/a	0.762
X-X, +0.60D+0.60W+0.60H	1.50	n/a	0.0	0.0870	0.0870	n/a	n/a	0.058
X-X, +D+0.70E+0.60H	1.50	n/a	0.0	0.1450	0.1450	n/a	n/a	0.097
X-X, +D+0.750L+0.750S+0.5250E+H	1.50	n/a	0.0	1.143	1.143	n/a	n/a	0.762
X-X, +0.60D+0.70E+H	1.50	n/a	0.0	0.0870	0.0870	n/a	n/a	0.058
Z-Z, +D+H	1.50	0.0	n/a	n/a	n/a	0.1450	0.1450	0.097
Z-Z, +D+L+H	1.50	0.0	n/a	n/a	n/a	1.476	1.476	0.984
Z-Z, +D+Lr+H	1.50	0.0	n/a	n/a	n/a	0.1450	0.1450	0.097
Z-Z, +D+S+H	1.50	0.0	n/a	n/a	n/a	0.1450	0.1450	0.097
Z-Z, +D+0.750Lr+0.750L+H	1.50	0.0	n/a	n/a	n/a	1.143	1.143	0.762
Z-Z, +D+0.750L+0.750S+H	1.50	0.0	n/a	n/a	n/a	1.143	1.143	0.762
Z-Z, +D+0.60W+H	1.50	0.0	n/a	n/a	n/a	0.1450	0.1450	0.097
Z-Z, +D+0.750Lr+0.750L+0.450W+H	1.50	0.0	n/a	n/a	n/a	1.143	1.143	0.762
Z-Z, +D+0.750L+0.750S+0.450W+H	1.50	0.0	n/a	n/a	n/a	1.143	1.143	0.762
Z-Z, +0.60D+0.60W+0.60H	1.50	0.0	n/a	n/a	n/a	0.0870	0.0870	0.058
Z-Z, +D+0.70E+0.60H	1.50	0.0	n/a	n/a	n/a	0.1450	0.1450	0.097
Z-Z, +D+0.750L+0.750S+0.5250E+H	1.50	0.0	n/a	n/a	n/a	1.143	1.143	0.762
Z-Z, +0.60D+0.70E+H	1.50	0.0	n/a	n/a	n/a	0.0870	0.0870	0.058
Overturning Stability								
Rotation Axis &								
Load Combination		Overturnin	g Moment		Resisting Moment	Stat	oility Ratio	Status
Footing Has NO Overturning								
Sliding Stability								All units k
Force Application Axis								
Load Combination		Sliding	Force		Resisting Force	Stat	oility Ratio	Status
Footing Has NO Sliding								

Footing Has NO Sliding

Title Block Line 1 You can change this area using the "Settings" menu item and then using the "Printing & Title Block" selection. Title Block Line 6

General Footing

Lic. # : KW-06004293

DESCRIPTION: F3.5

Footing Flexure

+0.90D+W+1.60H

+1.20D+L+0.20S+E+1.60H

Product No.3 a Lab Collimitation kit Surface iir 2' iir 2'<	I botting i lexure	N4.	Side	Tonsion	As Reg'd		Actual Ac	Phi*Mn		
XX, 1 400-160H 0.0 -Z Boltom 0.2992 Min Tenn % 0.2857 11.211 OK XX, 1 200-050L + 160H 0.360 -Z Boltom 0.2992 Min Tenn % 0.2857 11.211 OK XX, 1 200-160L + 150H 0.366 -Z Boltom 0.2992 Min Tenn % 0.2857 11.211 OK XX, 1 200-160L + 150H 0.2381 -Z Boltom 0.2992 Min Tenn % 0.2857 11.211 OK XX, + 1 200-160L + 150H 2.038 -Z Boltom 0.2992 Min Tenn % 0.2857 11.211 OK XX, + 1 200-160L + 050H+160H 0.038 -Z Boltom 0.2992 Min Tenn % 0.2857 11.211 OK XX, + 1 200-160L + 050H+160H 0.038 -Z Boltom 0.2992 Min Tenn % 0.2857 11.211 OK XX, + 1 200-160S+0.50H+160H 0.038 -Z Boltom 0.2992 Min Tenn % 0.2857 11.211 OK XX, + 1 200-160S+0.50H+160H 0.038 -Z Boltom 0.2992 Min Tenn % 0.2857 11.211	Flexure Axis & Load Combination		Side	Tension Surface		Gvrn. As in^2	Actual As in^2			Status
XX, 1 400-160H 0.0 -Z Boltom 0.2592 Min Tenn % 0.2867 11.211 OK XX, 1 200-050L + 160H 3.260 -Z Boltom 0.2592 Min Tenn % 0.2867 11.211 OK XX, 1 200-160L + 150H 3.260 -Z Boltom 0.2592 Min Tenn % 0.2867 11.211 OK XX, 1 200-160L + 150H 2.383 -Z Boltom 0.2592 Min Tenn % 0.2857 11.211 OK XX, + 1 200-160L + 150H 2.038 -Z Boltom 0.2592 Min Tenn % 0.2857 11.211 OK XX, + 1 200-160L + 050H + 10H 2.038 -Z Boltom 0.2592 Min Tenn % 0.2857 11.211 OK XX, + 1 200-160L + 050H + 10H 2.038 -Z Boltom 0.2592 Min Tenn % 0.2857 11.211 OK XX, + 1 200-160S + 050H + 10H 2.038 -Z Boltom 0.2592 Min Tenn % 0.2857 11.211 OK XX, + 1 200-160S + 0510H + 10H 0.038 -Z Boltom 0.2592 Min Tenn % 0.2857 11.21	X-X, +1,40D+1,60H	0.0	+7	Bottom	0.2592	Min Temp %	0.2857	11.2	11	ОК
XX, x1, 220-0.50(1+1,60+1,60+1) 3.260 +Z Bottom 0.2592 Min Temp % 0.2857 11,211 OK XX, x1, 220-1,60, 1-50,51-60+1 3.260 +Z Bottom 0.2592 Min Temp % 0.2857 11,211 OK XX, x1, 220-1,60, 1-50,51-60+1 3.260 +Z Bottom 0.2592 Min Temp % 0.2857 11,211 OK XX, x1, 220-1,60, 1-50,51-60+1 2038 +Z Bottom 0.2592 Min Temp % 0.2857 11,211 OK XX, x1, 220-1,40, 1-50,51-60+1 2038 +Z Bottom 0.2592 Min Temp % 0.2857 11,211 OK XX, x1, 220-1,40,51-50,91 40,10 0 -Z Bottom 0.2592 Min Temp % 0.2857 11,211 OK XX, x1, 220-1,40,51-50,91 40,10 0 -Z Bottom 0.2592 Min Temp % 0.2857 11,211 OK XX, x1, 220-1,40,51-50,91 40,10 -Z Bottom 0.2592 Min Temp % 0.2857 11,211 OK XX, x1, 220-1,40,51-50,91 40,10 -Z Bottom 0.2592<										
XX. +1.200-1.60(505-H.60H 3.260 +Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX. +1.200-1.60(505-H.60H 2.080 +Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX. +1.200-1.60(50-W-1.60H 2.038 +Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX. +1.200-1.60(50-W-1.60H 0.0 +Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX. +1.200-1.60(50-W-1.60H 2.03 -Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX. +1.200-1.60(50-W-1.60H 2.03 -Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX. +1.200-1.60(50-W-1.60H 2.03 +Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX. +1.200-1.60(50-W-1.60H 2.03 +Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX. +1.200-1.60(50-W-1.60H 2.03 +Z Bottom 0.2592 Min Temp % <td< td=""><td>X-X, +1.20D+0.50Lr+1.60L+1.60H</td><td></td><td>+Z</td><td>Bottom</td><td>0.2592</td><td></td><td></td><td>11.21</td><td>11</td><td></td></td<>	X-X, +1.20D+0.50Lr+1.60L+1.60H		+Z	Bottom	0.2592			11.21	11	
XX, x1, 200-16.0(L-95.5) All										
XX, x1 200-1 A0Ur+1-1 A0H 2.038 *Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX, x1 200-1 A0Ur+1-1 A0H 0.00 *Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX, x1 200-1 A0Ur+1 A0S-1 A0H 0.00 *Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX, x1 200-1 A0S-1 A0H 2.038 *Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX, x1 200-1 A0S-0 30H-1 0.01 *Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX, x1 200-1 A0S-0 30H-1 0.01 *Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX, x1 200-1 A0S-0 30H-1 0.03 *Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX, x1 200-1 A0S-0 30H-1 0.03 *Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX, x1 200-1 A0S-0 30H-1 0.03 *Z Bottom 0.2592 Min Temp % 0.2857 11.211										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-2							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	0.0	+2							
XX, +1,200+L+1,605+1,60H 2.08 -Z Bottom 0.2952 Min Termo % 0.2857 11,211 OK XX, +1,200+1,605+0,50W+1,60H 0.0 -Z Bottom 0.2592 Min Termo % 0.2857 11,211 OK XX, +1,200+1,605+0,50U+1,-W+1,60H 2.038 -Z Bottom 0.2592 Min Termo % 0.2857 11,211 OK XX, +1,200+1,60S-W+1,60H 2.038 -Z Bottom 0.2592 Min Termo % 0.2857 11,211 OK XX, +1,200+1,60S-W+1,60H 2.038 -Z Bottom 0.2592 Min Termo % 0.2857 11,211 OK XX, +1,200+1,40,50S-W+1,60H 0.038 -Z Bottom 0.2592 Min Termo % 0.2857 11,211 OK XX, +1,200+1,40,20S+1,40H 0.03 -Z Bottom 0.2592 Min Termo % 0.2857 11,211 OK XX, +1,200+1,40,20S+1,40H 0.00 -Z Bottom 0.2592 Min Termo % 0.2857 11,211 OK XX, +1,200+1,40,20S+1,40H 0.00 -Z Bottom 0.2592 Min Termo % 0.28		2 0.0								
XX, 1200+1.66S-05.0W+1.60H 0.0 -Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX, 1200-1.65V.1-W+1.60H 2.038 -Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX, 1200-1.65V.1-W+1.60H 2.038 -Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX, 1200-1.60SU.1-W+1.60H 2.038 -Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX, 1200-1.60SSW+1.60H 0.038 -Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX, 4, 900-W+1.60H 0.0 -Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX, 4, 900-L+0.20S+1-1.60H 2.038 -Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX, 4, 900-L+0.90H 0.0 -Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX, 4, 900-L+0.90H 0.0 -Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK <td></td>										
XX +1200+160S+0.50W+1.60H 0.0 -Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX +1200+0.50Lr-L-W+1.60H 2.038 -Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX +1.20D+L+0.50S-W+1.60H 2.038 -Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX +1.20D+L+0.50S-W+1.60H 2.038 -Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX +1.20D+L+0.50S-W+1.60H 0.0 -Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX +1.20D+L+0.20S+E-1.60H 2.038 -Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX +1.20D+L+0.20S+E-1.60H 2.038 -Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX +1.20D+L+0.20S+E-1.60H 0.0 +Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XZ +1.40D+1.60H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211			+Z							
XX, 1200-0.50Lr+L+W-160H 2.038 +Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX, 1200-L+0.50S-W+1.60H 2.038 +Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX, 1200-L+0.50S-W+1.60H 2.038 +Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX, 4, 000-W+1.60H 0.0 +Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX, 4, 000-W+1.60H 0.038 -Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX, 1, 200-L+0.20S+E-14.00H 0.038 -Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX, 4, 000D+E-0.90H 0.0 -Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK ZZ, 14.40D+1.60H 0.0 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK ZZ, 14.40D+1.60H 0.0 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK		0.0	-Z							
XX, 1200-0.50Lr-1.40v-1.60H 2.038 -Z Battom 0.2592 Min Temp % 0.2857 11.211 OK XX, 1200-L+0.50S-W+1.60H 2.038 -Z Battom 0.2592 Min Temp % 0.2857 11.211 OK XX, 4, 0900-W+1.60H 0.0 -Z Battom 0.2592 Min Temp % 0.2857 11.211 OK XX, 4, 1200-L+0.20S-E-1.60H 2.038 -Z Battom 0.2592 Min Temp % 0.2857 11.211 OK XX, 4, 1200-L+0.20S-E-1.60H 2.038 -Z Battom 0.2592 Min Temp % 0.2857 11.211 OK XX, 4, 0900-E-0.90H 0.0 +Z Battom 0.2592 Min Temp % 0.2857 11.211 OK XZ, 1-400-1.60H 0.0 -X Battom 0.2592 Min Temp % 0.2857 11.211 OK ZZ, 1-1.20D-65Ur+1.60L-1.60H 3.260 -X Battom 0.2592 Min Temp % 0.2857 11.211 OK ZZ, 1-20D-65Ur+1.60L-1.60H 3.260 -X Battom 0.2592 Min Temp % 0.2857 11.211	X-X, +1.20D+0.50Lr+L+W+1.60H	2.038	+Z	Bottom		Min Temp %	0.2857	11.21	11	OK
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2.038	-Z	Bottom	0.2592					OK
XX. 40 900-W-160H 0.0 +Z Bottom 0.2929 Min Temp % 0.2857 11.211 OK XX. 40 900-L+0.205+E+1.60H 2.038 +Z Bottom 0.29292 Min Temp % 0.2857 11.211 OK XX. 1 200-L+0.205+E+1.60H 2.038 +Z Bottom 0.29292 Min Temp % 0.2857 11.211 OK XX. 1 200-L+0.205+E+1.60H 0.00 +Z Bottom 0.29292 Min Temp % 0.2857 11.211 OK XX. 40 900-E+0.90H 0.0 -Z Bottom 0.29592 Min Temp % 0.2857 11.211 OK Z.7. 4140D-160H 0.0 -X Bottom 0.29592 Min Temp % 0.2857 11.211 OK Z.7. 4120D-160L+1.60H 3.260 +X Bottom 0.2957 11.211 OK Z.7. 4120D-160L+1.60H 3.260 +X Bottom 0.2957 Min Temp % 0.2857 11.211 OK Z.7. 4120D-160L+1.416H 2.038 +X Bottom 0.2957 Min Temp % 0.2857 11.211 OK Z.7. 4120D-160L+1.416			+Z							
XX. 4 (200-Wu-1,60H 0.0 -Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX. 4 (200-L+0,205+E+1,60H 2.038 +Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX. 4 (200-L+0,205+E+1,60H 0.0 +Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX. 4 (200-L+0,205+E+1,60H 0.0 +Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XZ. +1 40D+1,60H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK ZZ. +1 40D+1,60H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK ZZ. +1 40D+1,60L+1,60H 3.260 +X Bottom 0.2892 Min Temp % 0.2857 11.211 OK ZZ. +1 20D+1,60L+1,60H 3.260 +X Bottom 0.2892 Min Temp % 0.2857 11.211 OK ZZ. +1 20D+1,60L+1,61H 2.038 +X Bottom 0.2892 Min Temp % 0.2857 11.211 OK										
XX. +1 200-L-0.205+E-1.60H 2.038 +Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX. +1 200-L-0.205+E-1.60H 0.0 +Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX. +0 90D-E-0.90H 0.0 +Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK XX. +0 90D-E-0.90H 0.0 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK ZZ. +140D+1.60H 0.0 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK ZZ. +120D+0.50L+1.60H 3.260 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK ZZ. +120D+1.60L+0.50S+1.60H 3.260 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK ZZ. +120D+1.60L+0.50S+1.60H 3.260 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK ZZ. +120D+1.60L+0.50S+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 O										
X.X. + 1200-L-0.205-E-1.00H 2038 -Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK X.X. + 0 900-E-0.90H 0.0 -Z Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z.Z. + 1400+1.60H 0.0 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z.Z. + 1400+1.60H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z.Z. + 1200-0.50Lr+1.60L+1.60H 3.260 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z.Z. + 1200-1.60L-0.50S+1.60H 3.260 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z.Z. + 1200-1.60L-0.50S+1.60H 3.260 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z.Z. + 120D+1.60L-0.50S+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z.Z. + 120D+1.60L-0.50W+1.60H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11			-2							
X.X. +0.90D+E-0.90H 0.0 +Z Bottom 0.2592 Min Termp % 0.2857 11.211 OK X.X. +0.90D+E-0.90H 0.0 -X Bottom 0.2592 Min Termp % 0.2857 11.211 OK Z.Z. +140D+160H 0.0 +X Bottom 0.2592 Min Termp % 0.2857 11.211 OK Z.Z. +120D+050Lr+1.60L+1.60H 3.260 -X Bottom 0.2592 Min Termp % 0.2857 11.211 OK Z.Z. +120D+1.60L+0.50S+1.60H 3.260 -X Bottom 0.2592 Min Termp % 0.2857 11.211 OK Z.Z. +120D+1.60L+0.50S+1.60H 3.260 -X Bottom 0.2592 Min Termp % 0.2857 11.211 OK Z.Z. +120D+1.60Lr+1.60H 2.038 -X Bottom 0.2592 Min Termp % 0.2857 11.211 OK Z.Z. +120D+1.60Lr+0.50W+1.60H 0.0 -X Bottom 0.2592 Min Termp % 0.2857 11.211 OK Z.4.120D+1.60Lr+0.50W+1.60H <										
X.X. 40 90D+E-0.90H 0.0 -Z Bottom 0.2592 Min Termp % 0.2857 11.211 OK Z.Z. + 140D-1.60H 0.0 +X Bottom 0.2592 Min Termp % 0.2857 11.211 OK Z.Z. + 120D+0.50Lr+1.60L+1.60H 3.260 +X Bottom 0.2592 Min Termp % 0.2857 11.211 OK Z.Z. + 120D+0.50Lr+1.60L+0.50S+1.60H 3.260 +X Bottom 0.2592 Min Termp % 0.2857 11.211 OK Z.Z. + 120D+1.60L+0.50S+1.60H 3.260 +X Bottom 0.2592 Min Termp % 0.2857 11.211 OK Z.Z. + 120D+1.60L+0.50S+1.60H 2.038 +X Bottom 0.2592 Min Termp % 0.2857 11.211 OK Z.Z. + 120D+1.60L+0.50W+1.60H 0.0 +X Bottom 0.2592 Min Termp % 0.2857 11.211 OK Z.Z. + 120D+1.60L+0.50W+1.60H 0.0 -X Bottom 0.2592 Min Termp % 0.2857 11.211 OK Z.Z. + 120D+1.60L+0.50W+1.60H 0.0 -X Bottom 0.2592 Min Termp %										
2.7.2 14.40D-1.60H 0.0 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK 2.7.2 14.40D-1.60H 3.260 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK 2.7.4 12.0D-0.50Lr+1.60L+1.60H 3.260 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK 2.7.4 12.0D-0.50Lr+1.60L+0.50S+1.60H 3.260 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK 2.7.4 12.0D+1.60L+0.50S+1.60H 3.260 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK 2.7.4 12.0D+1.60Lr+0.160H+ 0.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK 2.7.4 12.0D+1.60Lr+0.60W+1.60H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK 2.7.4 12.0D+1.60Lr+0.50W+1.60H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK 0.27 1.211 OK										
Z-Z, 14 40D-1.60H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, 120D-0 50Lr+1.60L+1.60H 3.260 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, 1.20D-1.60L+0.50S+1.60H 3.260 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, 1.20D+1.60L+1.60L+1.60H 2.260 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, 1.20D+1.60L+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, 1.20D+1.60L+1.60H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, 1.20D+1.60L+0.50W+1.60H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, 1.20D+1.60S+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, 1.20D+1.60S+0.50W+1.60H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.21			-Z -X							
2-Z, 1: 20D-0.50L+1:60L+1:60H 3:260 -X Bottom 0:2592 Min Temp % 0:2857 11:211 OK Z-Z, 1: 20D+1:60L+0:50S+1:60H 3:260 -X Bottom 0.2592 Min Temp % 0:2857 11:211 OK Z-Z, 1: 20D+1:60L+0:50S+1:60H 3:260 +X Bottom 0.2592 Min Temp % 0:2857 11:211 OK Z-Z, 1: 20D+1:60L+1:60L+1:60H 2:038 +X Bottom 0.2592 Min Temp % 0:2857 11:211 OK Z-Z, 1: 20D+1:60L+0:50V+1:60H 0:0 +X Bottom 0:2592 Min Temp % 0:2857 11:211 OK Z-Z, 1: 20D+1:60L+0:50V+1:60H 0:0 +X Bottom 0:2592 Min Temp % 0:2857 11:211 OK Z-Z, 1: 20D+1:60S+0:50V+1:60H 0:0 +X Bottom 0:2592 Min Temp % 0:2857 11:211 OK Z-Z, 1: 20D+1:60S+0:50V+1:60H 0:0 +X Bottom 0:2592 Min Temp % 0:2857 11:211 OK Z-Z, 1: 20D+1:60S+0:50V+1:60H 0:0 +X Bottom 0:2592 Min Temp %										
Z-Z, +1,20D+0,50L+1,60L+1,60H 3,260 +X Bottom 0,2592 Min Temp % 0,2857 11,211 OK Z-Z, +1,20D+1,60L+0,50S+1,60H 3,260 +X Bottom 0,2592 Min Temp % 0,2857 11,211 OK Z-Z, +1,20D+1,60L+1,1.60H 2,038 -X Bottom 0,2592 Min Temp % 0,2857 11,211 OK Z-Z, +1,20D+1,60L+1,1.60H 2,038 +X Bottom 0,2592 Min Temp % 0,2857 11,211 OK Z-Z, +1,20D+1,60L+0,50W+1,60H 0.0 -X Bottom 0,2592 Min Temp % 0,2857 11,211 OK Z-Z, +1,20D+1,60L+0,50W+1,60H 0.0 -X Bottom 0,2592 Min Temp % 0,2857 11,211 OK Z-Z, +1,20D+1,61,60H 2,038 +X Bottom 0,2592 Min Temp % 0,2857 11,211 OK Z-Z, +1,20D+1,61,60H 2,038 +X Bottom 0,2592 Min Temp % 0,2857 11,211 OK Z-Z, +1,20D+1,60,5H,40H 0.0 +X Bottom 0,2592 Min Temp % 0,2857 <										
Z-Z, +1.20D+1.60L+0.50S+1.60H 3.260 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+1.60L+1.41.60H 2.038 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+1.60L+1.41.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+1.60L+1.41.60H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+1.60L+0.50N+1.60H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+1.60S+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+1.60S+0.50W+1.60H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+1.60S+0.50W+1.60H 0.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+1.60S+0.50W+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.										
Z-Z, +1,20D-1,60Lr+L+1,60H 2.038 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1,20D+1,60Lr+L+1,60H 0.0 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1,20D+1,60Lr+0,50W+1,60H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1,20D+1,60Lr+0,50W+1,60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1,20D+1,60S+0,50W+1,60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1,20D+1,60S+0,50W+1,60H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1,20D+1,60S+0,50W+1,60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1,20D+1,60S+0,50W+1,60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1,20D+1,60S+0,50W+1,60H 2.038 +X Bottom 0.2592 Min Temp %	Z-Z, +1.20D+1.60L+0.50S+1.60H	3.260	-X	Bottom	0.2592	Min Temp %	0.2857	11.21	11	
Z-Z, +1.20D+1.60Lr+L+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+1.60Lr+0.50W+1.60H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+1.40S+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+1.40S+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+1.60S+1.60H 0.0 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+1.60S+1.40S+1.60H 0.038 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+0.50Lr+L+W+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+1.40.50S+W+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+1.40.50S+W+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 </td <td>Z-Z, +1.20D+1.60L+0.50S+1.60H</td> <td></td> <td></td> <td>Bottom</td> <td></td> <td>Min Temp %</td> <td></td> <td></td> <td></td> <td></td>	Z-Z, +1.20D+1.60L+0.50S+1.60H			Bottom		Min Temp %				
Z-Z, +1.20D-1.60Lr+0.50W+1.60H 0.0 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+L-1.60S+1.60H 2.038 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+L-1.60S+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+L.60S+0.50W+1.60H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+1.60S+0.50W+1.60H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+1.60S+0.50W+1.40H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+1.40.50S+W+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+1.40.50S+W+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+1.40.0S+E+1.60H 2.038 +X Bottom 0.2592 Min Temp % <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
Z-Z, +1.20D-1.60Lr+0.50W+1.60H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+L+1.60S+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+L+1.60S+1.60H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+1.60S+0.50W+1.60H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+0.50Lr+L+W+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+0.50Lr+L+W+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+1.40.50S+W+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+1.40.50S+W+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +0.90D+W+1.60H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 <td></td>										
Z-Z, +1.20D+L+1.60S+1.60H 2.038 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+L.60S+0.50W+1.60H 0.0 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+1.60S+0.50W+1.60H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+1.60S+0.50W+1.60H 0.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+0.50L+1-W+1.60H 2.038 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+L+0.50S+W+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+L+0.50S+W+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+L+0.50S+W+1.60H 0.03 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +0.90D+W+1.60H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 <td></td>										
Z-Z, +1.20D+L+1.60S+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+1.60S+0.50W+1.60H 0.0 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+0.50Lr+1.+W+1.60H 2.038 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+0.50Lr+1.+W+1.60H 2.038 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+0.50Lr+1.+W+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+L+0.50S+W+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+L+0.50S+W+1.60H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+L+0.20S+E+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+L										
Z-Z, +1.20D+1.60S+0.50W+1.60H 0.0 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+1.60S+0.50W+1.60H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+0.50Lr+L+W+1.60H 2.038 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+0.50Lr+L+W+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+L+0.50S+W+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+L+0.50S+W+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +0.90D+W+1.60H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+L+0.20S+E+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +0.90D+E+0.90H <td></td>										
Z-Z, +1.20D+1.60S+0.50W+1.60H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+0.50Lr+L+W+1.60H 2.038 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+0.50Lr+L+W+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+L+0.50S+W+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+L+0.50S+W+1.60H 0.03 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.90D+L+0.50S+W+1.60H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.90D+L+0.20S+E+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+L+0.20S+E+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +0.90D+E+0.										
Z-Z, +1.20D+0.50Lr+L+W+1.60H 2.038 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+L0.50Lr+L+W+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+L0.50S+W+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+L0.50S+W+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+L+0.50S+W+1.60H 0.0 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +0.90D+W+1.60H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+L+0.20S+E+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+L+0.20S+E+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +0.90D+E+0.90H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
Z-Z, +1.20D+0.50Lr+L+W+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+L+0.50S+W+1.60H 2.038 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+L+0.50S+W+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+W+1.60H 0.0 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +0.90D+W+1.60H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+L+0.20S+E+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+L+0.20S+E+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+L+0.20S+E+1.60H 0.00 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +0.90D+E+0.90H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211<										
Z-Z, +1.20D+L+0.50S+W+1.60H 2.038 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+L+0.50S+W+1.60H 0.0 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +0.90D+W+1.60H 0.0 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +0.90D+W+1.60H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+L+0.20S+E+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+L+0.20S+E+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +0.90D+E+0.90H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +0.90D+E+0.90H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +0.90D+E+0.90H 0.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
Z-Z, +1.20D+L+0.50S+W+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +0.90D+W+1.60H 0.0 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +0.90D+W+1.60H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +0.90D+W+1.60H 2.038 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+L+0.20S+E+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +0.90D+E+0.90H 0.0 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +0.90D+E+0.90H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK One Way Shear Load Combination Vu @ -X Vu @ +X Vu @ -Z Vu @ +Z Vu @ Max Phi Vn Vu / Phi*Vn Status +1.40D+1.60H										
Z-Z, +0.90D+W+1.60H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+L+0.20S+E+1.60H 2.038 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+L+0.20S+E+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+L+0.20S+E+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +0.90D+E+0.90H 0.0 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Qread Wa Nu 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK One Way Shear 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK +1.40D+1.60H 0.00 psi 0.00 psi 0.00 psi 0.2857 11.211 OK +1.20D+0.50Lr+1.60H 20.01 psi 20.01 psi	Z-Z, +1.20D+L+0.50S+W+1.60H	2.038		Bottom	0.2592		0.2857			
Z-Z, +1.20D+L+0.20S+E+1.60H 2.038 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +1.20D+L+0.20S+E+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +0.90D+E+0.90H 0.0 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +0.90D+E+0.90H 0.0 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +0.90D+E+0.90H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK One Way Shear 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK +1.40D+1.60H 0.00 psi 0.00 psi 0.00 psi 0.2857 11.211 OK +1.40D+1.60H 0.00 psi 0.00 psi 0.00 psi 0.2857 11.211 OK +1.20D+0.50Lr+1.60L+1.60H 20.01 psi			-X	Bottom		Min Temp %				
Z-Z, +1.20D+L+0.20S+E+1.60H 2.038 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +0.90D+E+0.90H 0.0 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +0.90D+E+0.90H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK One Way Shear 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK +1.40D+1.60H 0.00 psi 0.01 psi 20.01 psi 20.01 psi 20.01 psi 20.01 psi 20.01 p										
Z-Z, +0.90D+E+0.90H 0.0 -X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Z-Z, +0.90D+E+0.90H 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK One Way Shear 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Load Combination Vu @ -X Vu @ +X Vu @ -Z Vu @ +Z Vu:Max Phi Vn Vu / Phi*Vn Status +1.40D+1.60H 0.00 psi 0.00										
Z-Z, +0.90D+E+0.90H One Way Shear 0.0 +X Bottom 0.2592 Min Temp % 0.2857 11.211 OK Load Combination Vu @ -X Vu @ +X Vu @ -Z Vu @ +Z Vu:Max Phi Vn Vu / Phi*Vn Status +1.40D+1.60H 0.00 psi 0.00 psi <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
One Way Shear Load Combination Vu @ -X Vu @ +X Vu @ -Z Vu @ +Z Vu:Max Phi Vn Vu / Phi*Vn Status +1.40D+1.60H 0.00 psi 0.01 psi 20.01 psi 2										
Load CombinationVu @ -XVu @ +XVu @ -ZVu @ +ZVu @ +ZVu:MaxPhi VnVu / Phi*VnStatus+1.40D+1.60H0.00 psi0.00 psi		0.0	+X	Bottom	0.2592	win temp %	0.2857	11.2	11	ŬK
+1.40D+1.60H0.00 psi0.00 psi0.01 psi20.01 ps			Vu @	V Vu	@ 7 \/u			i.Vp		Ctatua
+1.20D+0.50Lr+1.60L20.01 psi20.01 psi20.0										
+1.20D+1.60L+0.50S+1.60H20.01 psi20.01 psi20.01 psi20.01 psi20.01 psi20.01 psi0.24OK+1.20D+1.60Lr+L+1.60H12.51 psi12.51 psi12.51 psi12.51 psi12.51 psi12.51 psi0.15OK+1.20D+1.60Lr+0.50W+1.60H0.00 psi0.00 psi0.00 psi0.00 psi0.00 psi0.00 psi0.00 psi0.00 psi0.00 psi+1.20D+L+1.60S+1.60H12.51 psi12.51 psi12.51 psi12.51 psi12.51 psi12.51 psi0.00 psi0.00 psi+1.20D+L.60S+0.50W+1.60H0.00 psi0.00 psi0.00 psi0.00 psi0.00 psi0.00 psi0.00 psi0.00 psi+1.20D+1.60S+0.50W+1.60H12.51 psi12.51 psi12.51 psi12.51 psi12.51 psi12.51 psi0.00 psi0.00 psi+1.20D+0.50Lr+L+W+1.60H12.51 psi12.51 psi12.51 psi12.51 psi12.51 psi12.51 psi0.15OK+1.20D+L+0.50S+W+1.60H12.51 psi12.51 psi12.51 psi12.51 psi12.51 psi12.51 psi0.15OK										
+1.20D+1.60Lr+L+1.60H12.51 psi12.51 psi12.51 psi12.51 psi12.51 psi0.15OK+1.20D+1.60Lr+0.50W+1.60H0.00 psi0.00 ps										
+1.20D+1.60Lr+0.50W+1.60H0.00 psi0.00 ps										
+1.20D+L+1.60S+1.60H12.51 psi12.51 psi12.51 psi12.51 psi82.16 psi0.15OK+1.20D+1.60S+0.50W+1.60H0.00 psi0.00 psi0.00 psi0.00 psi0.00 psi0.00 psi0.00 psi0.00 psi0.00 psi+1.20D+0.50Lr+L+W+1.60H12.51 psi12.51 psi12.51 psi12.51 psi12.51 psi12.51 psi12.51 psi0.15OK+1.20D+L+0.50S+W+1.60H12.51 psi12.51 psi12.51 psi12.51 psi12.51 psi12.51 psi0.15OK										
+1.20D+1.60S+0.50W+1.60H0.00 psi0.00 psi										
+1.20D+0.50Lr+L+W+1.60H 12.51 psi 12.51 psi 12.51 psi 12.51 psi 12.51 psi 0.15 OK +1.20D+L+0.50S+W+1.60H 12.51 psi 12.51 psi 12.51 psi 12.51 psi 12.51 psi 0.15 OK										
+1.20D+L+0.50S+W+1.60H 12.51 psi 12.51 psi 12.51 psi 12.51 psi 12.51 psi 0.15 OK										
	+1.20D+L+0.50S+W+1.60H			12.51 psi	12.51 psi	12.51 psi	12.51 psi	82.16 psi 82.16 psi	0.15	

0.00 psi

12.51 psi

82.16 psi

82.16 psi

OK

OK

0.00

0.15

Project Title: Engineer: Project ID: Project Descr:

Printed: 27 DEC 2021, 4:40PM

File: Foundations and Footings.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.17 DHP ENGINEERING

Lic. # : KW-06004293

DESCRIPTION: F3.5

One Way Shear

Load Combination	Vu @ -X	Vu @ +X	Vu @ -Z	Vu @ +Z	Vu:Max	Phi Vn	Vu / Phi*Vn	Status
+0.90D+E+0.90H Two-Way "Punching" Shear	2q 00.0	i 0.00 ps	i 0.00	psi 0.00	0.00 psi 0.00 psi	82.16 p	osi 0.00 All units	OK ; k
Load Combination		Vu	PI	ni*Vn	Vu / Phi*Vn			Status
+1.40D+1.60H +1.20D+0.50Lr+1.60L+1.60H +1.20D+1.60L+0.50S+1.60H +1.20D+1.60Lr+L+1.60H +1.20D+1.60Lr+0.50W+1.60H +1.20D+L+1.60S+0.50W+1.60H +1.20D+L+0.50Lr+L+W+1.60H +1.20D+L+0.50S+W+1.60H +1.20D+L+0.20S+E+1.60H		0.00 psi 76.60 psi 76.60 psi 47.87 psi 0.00 psi 47.87 psi 0.00 psi 47.87 psi 47.87 psi 0.00 psi 47.87 psi		164.32 psi 164.32 psi	0 0.4662 0.4662 0.2914 0 0.2914 0.2914 0.2914 0.2914 0.2914			OK OK OK OK OK OK OK OK

Printed: 27 DEC 2021, 4:40PM File: Foundations and Footings.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.17 DHP ENGINEERING

TABLE 1B-ALLOWABLE TENSION LOADS AND DISPLACEMENTS FOR HDU SERIES HOLD-DOWN ASSEMBLIES^{1,2}

HOLD-	SDS		ALLOW	ABLE TENSI C _D = 1.33 (P _{all} (Ibs)			MENT Δ AT _OAD ^{8,9} (in.)
DOWN MODEL NO.	SCREW SIZE (in)		Wood Member Thickness ⁶ (in.)						
	01 (,	3	3.5	4.5	5.5	7.25	5.5 ⁽⁷⁾	Δ _{all}	Δs
HDU2	¹ / ₄ x 1.5	1,810	1,810	1,810	1,810	1,810	1,810	0.069	0.090
HDUZ	1⁄4 x 2.5	3,075	3,075	3,075	3,075	3,075	3,075	0.088	0.118
HDU4	1⁄4 x 1.5	3,105	3,105	3,105	3,105	3,105	3,105	0.083	0.108
HD04	1⁄4 x 2.5	4,565	4,565	4,565	4,565	4,565	4,565	0.114	0.154
HDU5	1⁄4 x 1.5	3,960	3,960	3,960	3,960	3,960	3,960	0.109	0.142
	1⁄4 x 2.5	5,645	5,670	5,670	5,670	5,670	5,670	0.115	0.158
HDU8	¼ x 1.5	5,980	5,980	5,980	5,980	5,980	5,980	0.087	0.115
	1⁄4 x 2.5	6,765	6,970	7,870	7,870	7,870	7,870	0.113	0.161
HDU11	1⁄4 x 2.5	_	_	_	9,535	11,175 ⁽¹⁰⁾	11,175	0.137	0.182
HDU14	¼ x 2.5	_	_	—	_	14,390(10)	14,445	0.172	0.239

For **SI:** 1 inch = 25.4 mm, 1 lbs = 4.45 N.

¹Tabulated allowable loads are for a hold-down assembly consisting of the hold-down device attached to a wood structural member with the size of SDS wood screws noted in the table. The quantity of SDS wood screws must comply with Table 1/

²The allowable loads for the hold-down assemblies are based on allowable stress design (ASD) and include the load duration factor,

C_D, corresponding with wind/earthquake loading in accordance with the NDS. No further increase is allowed.

³When using the basic load combinations in accordance with 2021 IBC Section <u>1605.1</u> (ASCE 7-16 Section 2.4) [2018, 2015, 2012 and 2009 IBC Section 1605.3.11, the tabulated allowable loads for the hold-down assembly must not be increased for wind of earthquake loading. When using the alternative basic load combinations in 2021 IBC Section 1605.2 [2018, 2015, 2012 and 2009 IBC Section 1605.3.2] that include wind or earthquake loads that tabulated allowable loads for the hold-down assembly must not be increased by 331/3 percent, nor can the alternative basic load combinations be reduced by a factor of 0.75. ⁴Anchorage to concrete or masonry must be determined in accordance with <u>Section 4.1.3</u> of this report.

 5 The tabulated allowable (ASD) tension loads must be multiplied by 1.4 to obtain the strength-level resistance loads associated with the tabulated $\Delta_{
m s}$ deformations. ⁶The minimum thickness of the wood members (i.e., the dimension parallel to the long axis of the SDS wood screws) must be as indicated in the table above. The minimum width of the wood members must be 3¹/₂ inches, except as noted.

⁷The minimum width of the wood members must be $5^{1}/_{2}$ inches (6x6 nominal).

⁸Tabulated displacement values. A₂₁₁ and A₅, for hold-down assemblies include all sources of hold-down assembly elongation, such as fastener slip, hold-down device extension and rotation, and anchor rod elongation, at ASD-level and strength-level forces, respectively.

⁹Elongation of the hold-down anchor rod must be calculated when the ASTM steel specification of the anchor rod differs from that described in the Section 3.2.4 of this report, or the actual unbraced length is greater than 6 inches. In lieu of calculating the elongation of the hold-down anchor rod for hold-downs raised 6 inches to 18 inches above the concrete, an additional 0.010 inch may be added to the tabulated hold-down displacement at allowable load, Δ_{all}, and an additional 0.014 inch may be added to the tabulated hold-down displacement at strength-level load, Δ_s , to account for anchor rod elongation.

¹⁰Requires a heavy hex anchor nut to achieve tabulated tension loads.

HOLD-DOWN MODEL NO.	ALLOWABLE TENSION LOAD, Pall (lbs)	DISPLACEMENT ∆ AT MAX LOAD ⁴ (in)			
HOLD-DOWN MODEL NO.	ALLOWABLE TENSION LOAD, P_{all} (ibs)	Δ _{all}	Δ _s		
HDU2	3,505	0.081	0.110		
HDU4	4,990	0.089	0.117		
HDU5	5,670	0.078	0.107		
HDU8	9,950	0.131	0.164		
HDU11	11,905	0.121	0.157		
HDU14	15,905 ⁽⁵⁾	0.124	0.172		

TABLE 1C—ALLOWABLE TENSION LOADS AND DISPLACEMENTS OF HDU SERIES HOLD-DOWN CONNECTORS^{2,3}

For SI: 1 inch = 25.4 mm, 1 lbs = 4.45 N.

¹This table lists the allowable tensile strength of the steel hold-down connectors exclusive of fasteners and anchor rods when tested on a steel jig. ²Allowable tension loads are applicable for designs complying with Section 12.11.2.2.2 of ASCE 7.

³When using the basic load combinations in accordance with 2021 IBC Section 1605.1 (ASCE 7-16 Section 2.4) [2018, 2015, 2012 and 2009 IBC Section 1605.3.1], the tabulated allowable loads for the hold-down must not be increased for wind of earthquake loading. When using the alternative basic load combinations in 2021 IBC Section 1605.2 [2018, 2015, 2012 and 2009 IBC Section 1605.3.2] that include wind or earthquake loads that tabulated allowable loads for the hold-down must not be increased by 33¹/₃ percent, nor can the alternative basic load combinations be reduced by a factor of 0.75. ${}^{4}\Delta_{all}$ is the displacement at the tabulated ASD load and Δ_{S} is displacement at the strength-level load. Tabulated displacement values in Table 1C consist only of deformation of the hold-down (tie-down) device when tested on a steel jig. Other variables contributing to total displacement, da, such as fastener slip, wood shrinkage, and anchor bolt/rod elongation, must be checked by the registered design professional. The tabulated allowable (ASD) tension loads must be multiplied by 1.4 to obtain the strength-level loads associated with the tabulated strength-level deformations, Δ_s . ⁵Requires a heavy hex anchor nut to achieve tabulated tension loads.

DEWALT DESIGN ASSIST 1.5.2.0

Page 1

HDU2_CIP

Nov 02 2020

.Project Information	
Company:	
Project Engineer:	Connor Kelly
Address:	32008 32nd Ave S Suite B Federal Way WA 98001
Phone:	M: 2532200848
Email:	connor@dhpengineering.com
	Untitled
Project Name:	
Project Address:	Untitled
Notes:	
adjusted to strength level per	he published allowable tension loads of HDU series connectors per ICC ESR-2330 Table 1C footnote 4. As this is the deliverable limit of the HDU connector assembly unchorage as noted in Table 1C footnote 1, option (c) of ACI 318-14 section 17.2.3.4
Selected Anchor Informa	tion
Selected Anchor :	Headed Hex Bolt
Brand:	Generic
Material:	5/8" Ø Threaded Bolt Hex Head ASTM F1554
Embedment,hnom:	h_{ef} 3.312 in h_{nom} 3.75 in
Approval:	
Issued/Revision:	
Design Principles	
Design Method:	ACI 318-14
Load Combinations:	Section 5.3 User Defined Loads
Seismic Loading:	Tension: 17.2.3.4.3(c) Shear: 17.2.3.5.3(b) Ω_0 User Defined
.Base Material Informatio	
Concrete:	
Type:	Cracked Normal Weight Concrete
Strength	3000 psi
Reinforcement:	
Edge Reinforcement	None or < #4 Rebar
Spacing	Tension No (Condition B) Shear No (Condition B)
Controls Breakout	Tension True Shear True
Controls Dieakout	
Base Plate:	
	Thickness 0 in Length 0 in Width 0 in
Base Plate:	Thickness 0 in Length 0 in Width 0 in None Height 0 in
Base Plate: Sizing	e
Base Plate: Sizing Standoff	None Height 0 in

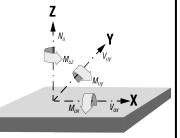
HDU2_CIP

Nov 02 2020

Geometric C	onditio	ons							
Geometric C				00		S.x.			
	× ×					X			
Summary Ro		c _{min}	0.782	in o	e _{ac} 4.96	·8 ir	ı s _{min}	2.500 in	n
Summary Ro Tension Loadin	esults	c _{min}	0.782		Capacity	.8 ir (1b)	1 s _{min}	2.500 in Status	n Critical
Summary Ro Tension Loadin Design Proof	esults	c _{min}		d (lb)					
Summary Ro Tension Loadin Design Proof Steel Strength	esults ng		Deman	d (lb)	Capacity		Utilization	Status	
Summary Ro Tension Loadin Design Proof Steel Strength Concrete Breal Pullout Strengt	esults ng cout Stre h		Deman 4305.00	d (lb)	Capacity 9831.00		Utilization 0.438	Status OK	
Summary Ro Tension Loadin Design Proof Steel Strength Concrete Breal Pullout Strengt Shear Loading	esults ng cout Stre h		Deman 4305.00 0.00 4305.00	d (lb)	Capacity 9831.00 0.00 5725.00	(lb)	Utilization 0.438 0.000 0.752	Status OK OK OK	Critical
Summary Ro Tension Loadin Design Proof Steel Strength Concrete Breal Pullout Strengt Shear Loading Design Proof	esults ng cout Stre h		Demand 4305.00 0.00 4305.00 Demand	d (lb)	Capacity 9831.00 0.00 5725.00 Capacity		Utilization 0.438 0.000 0.752 Utilization	Status OK OK OK Status	Critical
min 4.000 Summary Ro Tension Loadin Design Proof Steel Strength Concrete Breal Pullout Strengt Shear Loading Design Proof Steel Strength Concrete Breal	esults ng cout Stre h	ength	Deman 4305.00 0.00 4305.00	d (lb)	Capacity 9831.00 0.00 5725.00	(lb)	Utilization 0.438 0.000 0.752	Status OK OK OK	Critical

HDU2_CIP

Nov 02 2020


7.Warnings and Remarks

ANCHOR DESIGN CRITERIA IS SATISFIED

- The results of the calculations carried out by means of the DDA Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an design professional/engineer, particularly with regard to compliance with applicable standards, norms and permits, prior to using them for your specific project. The DDA Software serves only as an aid to interpret standards, norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- Calculations including seismic design requirements in accordance with ACI 318 are required for anchors in structures assigned to seismic design categories C, D, E and F.
- Under these seismic conditions, the direction of shear may not be predictable. In accordance with ACI 318 the full shear force should be assumed also in reverse direction for a safe design. Load reversal may influence the direction of the controlling concrete breakout strength.

8.Load Condition

Desig	n Loads	/ Action	s					
Nu	4305	lb	Vux	0	lb	Vuy	0	lb
Muz	0	in-lb	Mux	0	in-lb	Muy	0	in-lb
Consid	ler Load	Reversal	Х	Direction	100%	ΥI	Direction	100%

HDU2_CIP

Nov 02 2020

9.Load	Distributi	on											
Max. co	oncrete com	pressi	ve strain:	0.000	%	Anc	hor Eccentr	icity					
Max. co	oncrete com	pressi	ve stress:	0.000	psi	ex	0	in		ey	0	in	
<u>Resulti</u>	ng anchor f	orces /	Load distr	ibution									
Anchor		(lb)	Shear Loa	ad (lb)	Compone	nt She	ear Load		(lb)	А	nchor	r Coordinates	(in)
	Load				Shear X		Shear Y				Х	Y	
1	4305.00		0.0		0.0		0.0			0	.000	0.000	

-Page 76 of 107

N

Page 5

HDU2_CIP

Nov 02 2020

10.Design Proof Tension Loading

Steel S	Strength
---------	----------

ACI 318-14 17.4.1

Variables

N _{sa}	(lb)	φ
13108.	125	0.75

Results

φN _{sa}	=	9831.0	lb
N _{ua}	=	4305.0	lb
Utilization	=	43.8%	

Input data and results must be checked for agreement with the existing conditions, the standards and guidelines and must be checked for plausibility

Table 17.3.1.1

	DEWALT DESIGN ASSIST 1.5.2.0	Page 77 of Page 6
<u>DEWALT.</u>	HDU2_CIP	
		Nov 02 2020
Pullout Strength:		<u>i</u> N
ACI 318-14 17.4.3 Equations $N_{pn} = \Psi_{c,P} \cdot N_{p}$		Eqn. 17.4.3.1
$N_p = 8 \cdot A_{brg} \cdot f_c$		Eqn. 17.4.3.4
Variables $\Psi_{c,P}$ A_{brg} (in ²)	f' _c (psi) φ φs	eis
$\frac{1}{1.000}$ $\frac{1}{0.454}$		r50
Results $\varphi N_{nn} = 5725$	b	
' pii	b	Table 17.3.1.1
$N_{ua} = 4305$		

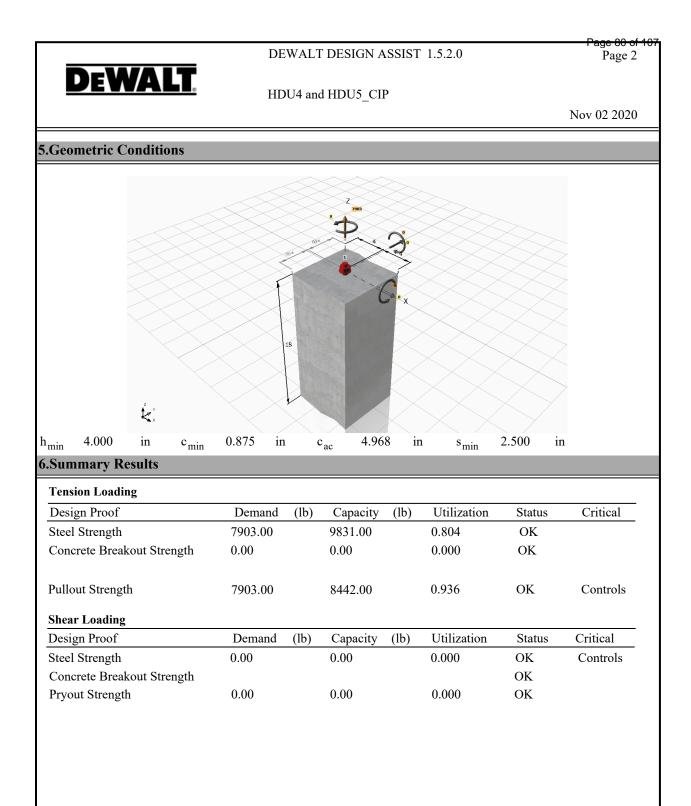
HDU2_CIP

ace 78 of

Page 7

Nov 02 2020

12.Interaction of Tension and Shear Loads Reference ACI 318-14 17.6 Equations $(((N_{ua} / \phi . N_n) + (V_{ua} / \phi . V_n)) / 1.2) \le 1.0$ Eqn. 17.6.3 Variables $\frac{N_{ua} \, / \, \phi \cdot N_n}{0.752} \qquad \frac{V_{ua} \, / \, \phi \cdot V_n}{0.000}$ Results 1.0 0.752 \leq OK Status : ANCHOR DESIGN CRITERIA IS SATISFIED


	\A/A	
LJE		

Page 1

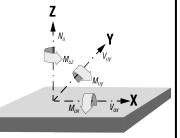
HDU4 and HDU5_CIP

Nov 02 2020

1.Project Information	
Company:	
Project Engineer:	Connor Kelly
Address:	32008 32nd Ave S Suite B Federal Way WA 98001
Phone:	M: 2532200848
Email:	connor@dhpengineering.com
Project Name:	Untitled
Ū	Untitled
Project Address:	Untitled
Notes:	
adjusted to strength level per Ta	e published allowable tension loads of HDU series connectors per ICC ESR-2330 able 1C footnote 4. As this is the deliverable limit of the HDU connector assembly achorage as noted in Table 1C footnote 1, option (c) of ACI 318-14 section 17.2.3.4.
2.Selected Anchor Informat	ion
Selected Anchor :	Headed Heavy Hex Bolt
Brand:	Generic
Material:	5/8" Ø Threaded Bolt Heavy Hex Head ASTM F1554
Embedment,hnom:	h _{ef} 3.312 in h _{nom} 3.75 in
Approval:	
Issued/Revision:	
3.Design Principles	
Design Method:	ACI 318-14
Load Combinations:	Section 5.3 User Defined Loads
Seismic Loading:	Tension: 17.2.3.4.3(c) Shear: 17.2.3.5.3(b) $\Omega_0 =$ User Defined
4.Base Material Information	
Concrete: Type:	Cracked Normal Weight Concrete
Strength	3000 psi
Reinforcement:	5000 psi
Edge Reinforcement	None or < #4 Rebar
Spacing	Tension No (Condition B) Shear No (Condition B)
Controls Breakout	Tension True Shear True
Base Plate:	
Sizing	Thickness 0 in Length 0 in Width 0 in
Standoff	None Height 0 in
Strength	0 psi
Profile:	None
Torqued Anchor Bolt: Concrete Covers:	Base Cover: 0.25 in End Cover: 0.25 in

HDU4 and HDU5_CIP

Nov 02 2020


7.Warnings and Remarks

ANCHOR DESIGN CRITERIA IS SATISFIED

- The results of the calculations carried out by means of the DDA Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an design professional/engineer, particularly with regard to compliance with applicable standards, norms and permits, prior to using them for your specific project. The DDA Software serves only as an aid to interpret standards, norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- Calculations including seismic design requirements in accordance with ACI 318 are required for anchors in structures assigned to seismic design categories C, D, E and F.
- Under these seismic conditions, the direction of shear may not be predictable. In accordance with ACI 318 the full shear force should be assumed also in reverse direction for a safe design. Load reversal may influence the direction of the controlling concrete breakout strength.

8.Load Condition

Desig	n Loads	/ Action	S					
Nu	7903	lb	Vux	0	lb	Vuy	0	lb
Muz	0	in-lb	Mux	0	in-lb	Muy	0	in-lb
Consid	ler Load	Reversal	Х	Direction	100%	ΥI	Direction	100%

DEWAL	
	100

HDU4 and HDU5_CIP

Nov 02 2020

9.Load l	Distributio	on and a state of the state of										
Max. co	oncrete com	pressive strain:	0.000	%	Anc	hor Eccentri	city	_				
Max. co	ncrete com	pressive stress:	0.000	psi	ex	0	in		ey	0	in	
Resultir	ng anchor fo	orces / Load distr	ibution									
Anchor		(lb) Shear Loa	ad (lb)	Compone	nt She	ar Load	((lb)	А	nchor	Coordinates	(in)
	Load			Shear X		Shear Y				Х	Y	
1	7903.00	0.0		0.0		0.0			0	.000	0.000	

-Page 83 of 107

Page 5

HDU4 and HDU5_CIP

Nov 02 2020

10.Design Proof Tension Loading

Steel Strength			<u>†</u> N
ACI 318-14 17.4.	1		
Variables			
N _{sa} (lb)) φ		
13108.125	0.75		
Results			
ϕN_{sa}	= 9831.0	lb	Table 17.3
N _{ua}	= 7903.0	lb	
Utilization	= 80.4%		

HD04 and HD05_CIP Nov 02 202 Pullout Strength: ACI 318-14 17.4.3 Equations $N_{pn} = \Psi_{c,P} \cdot N_p$ $N_p = 8 \cdot A_{brg} \cdot f_c$ Variables $\frac{\Psi_{c,P}}{1.000}$ $\frac{A_{brg} (in^2)}{0.670}$ $\frac{f_c (psi)}{3000}$ $\frac{\phi}{0.70}$ $\frac{\phi s_{cis}}{0.750}$ Results ϕN_{pn} = 8442 lb		DEWALT DE	SIGN ASSIST	1.5.2.0	Page 84 c Page 6
Pullout Strength: Image: ACI 318-14 17.4.3 Image: Equations Image: Equations $N_{pn} = \Psi_{c,P} \cdot N_p$ Eqn. 17.4.3. $N_p = 8 \cdot A_{brg} \cdot f_c$ Eqn. 17.4.3. Variables Image: Provide the state of the s	DEWALT	HDU4 and HD	U5_CIP		New 02 202
ACI 318-14 17.4.3 Equations $N_{pn} = \Psi_{c,P} \cdot N_{p}$ $N_{p} = 8 \cdot A_{brg} \cdot f_{c}$ Cariables $\frac{\Psi_{c,P}}{1.000} \frac{A_{brg} (in^{2})}{0.670} \frac{f_{c} (psi)}{3000} \frac{\phi}{0.70} \frac{\phi s_{eis}}{0.750}$ Results $\phi N_{pn} = 8442$ lb $N_{ua} = 7903$ lb Table 17.3.1					Nov 02 202
Equations $N_{pn} = \Psi_{c,P} \cdot N_p$ Eqn. 17.4.3. $N_p = 8 \cdot A_{brg} \cdot f_c$ Eqn. 17.4.3. Variables $\frac{\Psi_{c,P}}{1.000}$ $\frac{A_{brg} (in^2)}{0.670}$ $\frac{f_c (psi)}{3000}$ $\frac{\phi}{0.70}$ $\frac{\phi s_{eis}}{0.750}$ Results ϕN_{pn} = 8442 Ib Table 17.3.1	Pullout Strength:				<u>1</u> N
$N_p = 8 \cdot A_{brg} \cdot f_c$ Eqn. 17.4.3. $V_p = 8 \cdot A_{brg} \cdot f_c$ Eqn. 17.4.3. Variables $\frac{\Psi_{c,P}}{1.000} - \frac{A_{brg} \cdot (in^2)}{0.670} - \frac{f_c \cdot (psi)}{3000} - \frac{\phi}{0.70} - \frac{\phi s_{eis}}{0.750}$ Results $\phi N_{pn} = 8442$ lb $N_{ua} = 7903$ lb Table 17.3.1	Equations				
$N_{p} = 8 \cdot A_{brg} \cdot f_{c} \qquad Eqn. 17.4.3.$ Variables $\frac{\Psi_{c,P}}{1.000} = \frac{A_{brg} (in^{2})}{0.670} = \frac{f_{c} (psi)}{3000} = \frac{\phi}{0.70} = \frac{\phi s_{eis}}{0.750}$ Results $\phi N_{pn} = 8442 \qquad lb$ $N_{ua} = 7903 \qquad lb \qquad Table 17.3.1$	$N_{pn} = \Psi_{c,P} \cdot N_{p}$				Eqn. 17.4.3.
$\frac{\Psi_{c,P}}{1.000} = \frac{A_{brg} (in^2)}{0.670} = \frac{f_c (psi)}{3000} = \frac{\phi}{0.70} = \frac{\phi s_{cis}}{0.750}$ Results $\phi N_{pn} = 8442 lb$ $N_{ua} = 7903 lb$ Table 17.3.1	$N_p = 8 \cdot A_{brg} \cdot f_c$				Eqn. 17.4.3.
$\varphi N_{pn} = 8442 \qquad lb$ $N_{ua} = 7903 \qquad lb \qquad Table 17.3.1$	1.000 0.670	3000	0.70	0.750	
$N_{ua} = 7903$ lb Table 17.3.1		lb			
	$N_{ua} = 7903$	lb			Table 17.3.1

HDU4 and HDU5_CIP

Page 85 of 107

Page 7

Nov 02 2020

Reference

Eqn. 17.6.3

12.Interaction of Tension and Shear Loads

ACI 318-14 17.6

Equations

$$(((N_{ua} / \varphi . N_n) + (V_{ua} / \varphi . V_n)) / 1.2) \le 1.0$$

Variables

$N_{ua} / \phi \cdot N_n$	$\boldsymbol{V}_{ua}/\boldsymbol{\phi}\cdot\boldsymbol{V}_{n}$
0.936	0.000

Results

0.936	\leq	1.0
Status	:	OK

ANCHOR DESIGN CRITERIA IS SATISFIED

Page 1

HDU8_CIP

Nov 02 2020

1.Project Information	
Company:	
Project Engineer:	Connor Kelly
Address:	32008 32nd Ave S Suite B Federal Way WA 98001
Phone:	M: 2532200848
Email:	connor@dhpengineering.com
	Untitled
Project Name:	
Project Address:	Untitled
Notes:	
adjusted to strength level per	ne published allowable tension loads of HDU series connectors per ICC ESR-2330 Table 1C footnote 4. As this is the deliverable limit of the HDU connector assembly nchorage as noted in Table 1C footnote 1, option (c) of ACI 318-14 section 17.2.3.4.3
2.Selected Anchor Informa	tion
Selected Anchor :	Headed Heavy Hex Bolt
Brand:	Generic
Material:	7/8" Ø Threaded Bolt Heavy Hex Head ASTM F1554
Embedment,hnom:	h_{ef} 5.187 in h_{nom} 5.75 in
Approval:	
Issued/Revision:	
3.Design Principles	
Design Method:	ACI 318-14
Load Combinations:	Section 5.3 User Defined Loads
Seismic Loading:	Tension: 17.2.3.4.3(c) Shear: 17.2.3.5.3(b) $\Omega_0 =$ User Defined
4.Base Material Informatio	
Concrete:	
Type:	Cracked Normal Weight Concrete
Strength	3000 psi
Reinforcement:	
Edge Reinforcement	None or < #4 Rebar
Spacing	Tension No (Condition B) Shear No (Condition B)
Controls Breakout	Tension True Shear True
Base Plate:	
Sizing	Thickness 0 in Length 0 in Width 0 in
Standoff	None Height 0 in
Strength	0 psi
Profile:	None
Torqued Anchor Bolt: Concrete Covers:	Base Cover: 0.25 in End Cover: 0.25 in
Input data and results must be checked for	or agreement with the existing conditions, the standards and guidelines and must be checked for plausibility

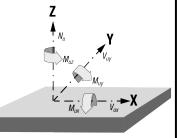
HDU8_CIP

Nov 02 2020

min 6.000 in Summary Result Tension Loading Design Proof Steel Strength Concrete Breakout S Pullout Strength	c _{min}	1.094 in	IB IB	z 10 10 10 10 10 10 10 10 10 10	in	S _{min}	3.500 in	
nin 6.000 in Summary Result Fension Loading Design Proof Steel Strength Concrete Breakout S	c _{min}	1.094 in	c	e _{ac} 7.781	in	s _{min}	3.500 in	1
F ension Loading Design Proof Steel Strength Concrete Breakout S								
Design Proof Steel Strength Concrete Breakout S								
Steel Strength Concrete Breakout S								
Steel Strength Concrete Breakout S		Demand	(lb)	Capacity (l	lb) U	tilization	Status	Critical
		13930.00		20085.00	0.	694	OK	
ullout Strength	Strength	0.00		0.00	0.	000	OK	
_		13930.00		14972.00	0.9	930	OK	Controls
Shear Loading								
Design Proof		Demand	(lb)	Capacity (ll	/	tilization	Status	Critical
Steel Strength		0.00		0.00	0.0	000	OK	Controls
Concrete Breakout S	Strength	0.00		0.00	<u>,</u>		OK	
Pryout Strength		0.00		0.00	0.	000	OK	

Nov 02 2020

7.Warnings and Remarks


ANCHOR DESIGN CRITERIA IS SATISFIED

HDU8_CIP

- The results of the calculations carried out by means of the DDA Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an design professional/engineer, particularly with regard to compliance with applicable standards, norms and permits, prior to using them for your specific project. The DDA Software serves only as an aid to interpret standards, norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- Calculations including seismic design requirements in accordance with ACI 318 are required for anchors in structures assigned to seismic design categories C, D, E and F.
- Under these seismic conditions, the direction of shear may not be predictable. In accordance with ACI 318 the full shear force should be assumed also in reverse direction for a safe design. Load reversal may influence the direction of the controlling concrete breakout strength.

8.Load Condition

Desig	n Loads /	/ Action	S					
Nu	13930	lb	Vux	0	lb	Vuy	0	lb
Muz	0	in-lb	Mux	0	in-lb	Muy	0	in-lb
Consid	ler Load I	Reversal	Х	Direction	100%	ΥI	Direction	100%

Page	4

HDU8_CIP

Nov 02 2020

9.Load Dis	tribution											
Max. concr	rete compressiv	ve strain:	0.000	%	Anc	hor Eccentri	city	_				
Max. concr	rete compressiv	ve stress:	0.000	psi	ex	0	in		ey	0	in	
Resulting a	anchor forces /	Load distr	ibution_									
	ension (lb)	Shear Loa	ud (lb)	Componer	nt She	ar Load	((lb)	Α	ncho	r Coordinates	(in)
L	oad			Shear X		Shear Y				Х	Y	
1 1	13930.00	0.0		0.0		0.0			0	.000	0.000	

-Page 90 of 107

Page 5

HDU8_CIP

Nov 02 2020

10.Design Proof Tension Loading

eel Strength				
CI 318-14 17.4.1				
Variables				ء ۵
N _{sa} (lb)	φ			
26780.592	0.75			
Results				
ϕN_{sa}	20085.0	lb		Т
	13930.0	lb		

-		DEWALT DES	IGN ASSIST	1.5.2.0	Page 6
<u>DeWA</u>		HDU8_CIP			
					Nov 02 2020
Pullout Strength	:				<u>†</u> N
ACI 318-14 17.4 Equations $N_{pn} = \Psi_{c,P}$.					Eqn. 17.4.3.1
$N_p = 8 \cdot A_{brg}$	g.f _c				Eqn. 17.4.3.4
Variables					
Ψ _{c,P}	A _{brg} (in ²)	f _c (psi)	φ	φs _{eis}	
1.000	1.188	3000	0.70	0.750	-
Results	- 14072 11				
φN _{pn}	= 14972 lb = 13930 lb				Table 17.3.1.
N _{ua} Utilization	= 93.0%				14010 17.3.1.

HDU8_CIP

Page 7

Nov 02 2020

12.Interaction of Tension and Shear Loads Reference ACI 318-14 17.6 Equations $(((N_{ua} / \phi . N_n) + (V_{ua} / \phi . V_n)) / 1.2) \le 1.0$ Eqn. 17.6.3 Variables $\frac{N_{ua} \, / \, \phi \cdot N_n}{0.930} \qquad \qquad \frac{V_{ua} \, / \, \phi \cdot V_n}{0.000}$ Results 1.0 0.930 \leq OK Status : ANCHOR DESIGN CRITERIA IS SATISFIED

Page 1

HDU11_CIP

Nov 02 2020

I.Project Information	
Company:	
Project Engineer:	Connor Kelly
Address:	32008 32nd Ave S Suite B Federal Way WA 98001
Phone:	M: 2532200848
Email:	connor@dhpengineering.com
Project Name:	Untitled
	Untitled
Project Address:	Ontified
Notes:	
adjusted to strength level per T	e published allowable tension loads of HDU series connectors per ICC ESR-2330 Table 1C footnote 4. As this is the deliverable limit of the HDU connector assembly inchorage as noted in Table 1C footnote 1, option (c) of ACI 318-14 section 17.2.3.4.
2.Selected Anchor Informat	tion
Selected Anchor :	Headed Heavy Hex Bolt
Brand:	Generic
Material:	1" Ø Threaded Bolt Heavy Hex Head ASTM F1554
Embedment,hnom:	h_{ef} 5.062 in h_{nom} 5.75 in
Approval:	
Issued/Revision:	
3.Design Principles	
Design Method:	ACI 318-14
Load Combinations:	Section 5.3 User Defined Loads
Seismic Loading:	Tension: 17.2.3.4.3(c) Shear: 17.2.3.5.3(b) $\Omega_0^{=}$ User Defined
4.Base Material Information	n
Concrete:	
Туре:	Cracked Normal Weight Concrete
Strength	3000 psi
Reinforcement:	
Edge Reinforcement	None or $<$ #4 Rebar
Spacing	TensionNo (Condition B)ShearNo (Condition B)
Controls Breakout	Tension True Shear True
Base Plate:	
Sizing	Thickness 0 in Length 0 in Width 0 in
Standoff	None Height 0 in
Strength	0 psi
Profile:	None
Torqued Anchor Bolt: Concrete Covers:	Base Cover: 0.25 in End Cover: 0.25 in

Page 94 of 107

Page 2

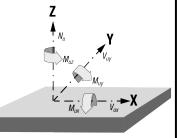
HDU11_CIP

Nov 02 2020

5.Geometric Conditions Ĺ, 6.000 7.593 4.000 in 1.188 in in \mathbf{c}_{ac} h_{min} in \mathbf{c}_{\min} \mathbf{s}_{\min} **6.Summary Results Tension Loading** Design Proof Utilization Critical Demand (lb) Capacity (lb) Status Steel Strength 16667.00 26350.00 0.633 OK Concrete Breakout Strength 0.00 0.00 0.000 OK Pullout Strength 16667.00 0.881 OK Controls 18918.00 Shear Loading Utilization Design Proof Demand (lb) Capacity (lb) Status Critical 0.00 0.00 0.000 Steel Strength OK Controls Concrete Breakout Strength OK 0.00 OK Pryout Strength 0.00 0.000

HDU11_CIP

Nov 02 2020


7.Warnings and Remarks

ANCHOR DESIGN CRITERIA IS SATISFIED

- The results of the calculations carried out by means of the DDA Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an design professional/engineer, particularly with regard to compliance with applicable standards, norms and permits, prior to using them for your specific project. The DDA Software serves only as an aid to interpret standards, norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- Calculations including seismic design requirements in accordance with ACI 318 are required for anchors in structures assigned to seismic design categories C, D, E and F.
- Under these seismic conditions, the direction of shear may not be predictable. In accordance with ACI 318 the full shear force should be assumed also in reverse direction for a safe design. Load reversal may influence the direction of the controlling concrete breakout strength.

8.Load Condition

Desig	n Loads /	/ Action	S					
Nu	16667	lb	Vux	0	lb	Vuy	0	lb
Muz	0	in-lb	Mux	0	in-lb	Muy	0	in-lb
Consic	ler Load I	Reversal	Х	Direction	100%	ΥĽ	Direction	100%

HDU11_CIP

Nov 02 2020

9.Load I	Distribution									
Max. co	ncrete compressi	ve strain: 0.000	%	Anch	or Eccentri	city				
Max. co	ncrete compressi	ive stress: 0.000	psi	ex	0	in	ey	0	in	
Resultin	g anchor forces	Load distribution	<u> </u>							
Anchor	Tension (lb)	Shear Load (lb)	Compone	ent Shea	ır Load	(lb) A	nchor	· Coordinates	(in)
	Load		Shear X		Shear Y			Х	Y	
1	16667.00	0.0	0.0		0.0		0	0.000	0.000	

Page 97 of 107

Page 5

HDU11_CIP

Nov 02 2020

10.Design Proof Tension Loading

Steel Strength		
ACI 318-14 17.4.1	-	
Variables		
N _{sa} (lb)	φ	
35133.233	0.75	
Results		
ϕN_{sa}	= 26350.0	lb
N _{ua}	= 16667.0	lb
Utilization	= 63.3%	

		DEWALT DES	IGN ASSIST	1.5.2.0	Page 98 o Page 6
DEWA		HDU11_CIP			N. 00.0000
					Nov 02 2020
Pullout Strength:					<u>†</u> N
ACI 318-14 17.4.3 Equations $N_{pn} = \Psi_{c,P} \cdot N_{p}$ $N_{p} = 8 \cdot A_{brg}$	N _p				Eqn. 17.4.3.1 Eqn. 17.4.3.4
p org	C				Equ. 17.4.5.4
Variables					
Variables $\Psi_{c,P}$	A _{brg} (in ²)	f _c (psi)	φ	φs _{eis}	
	A _{brg} (in ²) 1.501	f _c (psi) 3000	φ 0.70	$\frac{\phi s_{eis}}{0.750}$	
$\Psi_{c,P}$					
$\frac{\Psi_{c,P}}{1.000}$ Results		3000			
$\frac{\Psi_{c,P}}{1.000}$ Results $\phi N_{pn} =$	1.501	3000			Table 17.3.1.

aac 0

Page 7

Nov 02 2020

HDU11_CIP **12.Interaction of Tension and Shear Loads** Reference ACI 318-14 17.6 Equations $(((N_{ua} / \phi . N_n) + (V_{ua} / \phi . V_n)) / 1.2) \le 1.0$ Eqn. 17.6.3 Variables $\frac{N_{ua} \, / \, \phi \cdot N_n}{0.881} \qquad \qquad \frac{V_{ua} \, / \, \phi \cdot V_n}{0.000}$ Results 1.0 0.881 \leq OK Status : ANCHOR DESIGN CRITERIA IS SATISFIED

DEWALL					
	D	ΕV	<u>\'/</u>	A	

HDU14 and HD12_CIP

Nov 02 2020

.Project Information	
Company:	
Project Engineer:	Connor Kelly
Address:	32008 32nd Ave S Suite B Federal Way WA 98001
Phone:	M: 2532200848
Email:	connor@dhpengineering.com
Project Name:	Untitled
Project Address:	Untitled
Notes:	
adjusted to strength level per T	e published allowable tension loads of HDU series connectors per ICC ESR-2330 able 1C footnote 4. As this is the deliverable limit of the HDU connector assembly achorage as noted in Table 1C footnote 1, option (c) of ACI 318-14 section 17.2.3.4
Selected Anchor Informat	ion
Selected Anchor :	Headed Heavy Hex Bolt
Brand:	Generic
Material:	1-1/8" Ø Threaded Bolt Heavy Hex Head ASTM F1554
Embedment,hnom:	h_{ef} 3.75 in h_{nom} 4.5 in
Approval:	
Issued/Revision:	
3.Design Principles	
Design Method:	ACI 318-14
Load Combinations:	Section 5.3
Seismic Loading:	Tension: 17.2.3.4.3(c) Shear: 17.2.3.5.3(b) Ω_0 = User Defined
Base Material Information	
Concrete:	
Туре:	Cracked Normal Weight Concrete
Strength	3000 psi
Reinforcement:	
Edge Reinforcement	None or < #4 Rebar
Spacing	Tension No (Condition B) Shear No (Condition B)
Controls Breakout	Tension True Shear True
Base Plate:	
Sizing	Thickness 0 in Length 0 in Width 0 in
Standoff	None Height 0 in
Strength	0 psi
Profile:	None
Torqued Anchor Bolt: Concrete Covers:	Base Cover: 0.25 in End Cover: 0.25 in
Concrete Covers.	Base Cover. 0.25 in End Cover. 0.25 in

Page 2

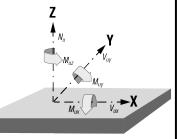
HDU14 and HD12_CIP

Nov 02 2020

5.Geometric Conditions Ĺ, 4.750 5.625 4.500 in 1.282 in in h_{min} c_{ac} in \mathbf{c}_{\min} \mathbf{s}_{\min} **6.Summary Results Tension Loading** Design Proof Utilization Critical Demand (lb) Capacity (lb) Status Steel Strength 22267.00 33202.00 0.671 OK Concrete Breakout Strength 0.00 0.00 0.000 OK Pullout Strength 0.955 OK Controls 22267.00 23323.00 Shear Loading Utilization Design Proof Demand (lb) Capacity (lb) Status Critical 0.00 0.00 0.000 Steel Strength OK Controls Concrete Breakout Strength OK 0.00 OK Pryout Strength 0.00 0.000

HDU14 and HD12_CIP

Nov 02 2020


7.Warnings and Remarks

ANCHOR DESIGN CRITERIA IS SATISFIED

- The results of the calculations carried out by means of the DDA Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an design professional/engineer, particularly with regard to compliance with applicable standards, norms and permits, prior to using them for your specific project. The DDA Software serves only as an aid to interpret standards, norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- Calculations including seismic design requirements in accordance with ACI 318 are required for anchors in structures assigned to seismic design categories C, D, E and F.
- Under these seismic conditions, the direction of shear may not be predictable. In accordance with ACI 318 the full shear force should be assumed also in reverse direction for a safe design. Load reversal may influence the direction of the controlling concrete breakout strength.

8.Load Condition

Desig	n Loads /	/ Action	s					
Nu	22267	lb	Vux	0	lb	Vuy	0	lb
Muz	0	in-lb	Mux	0	in-lb	Muy	0	in-lb
Consid	ler Load I	Reversal	Х	Direction	100%	ΥĽ	Direction	100%

DEWAL	T
	1

Page 4	
--------	--

HDU14 and HD12_CIP

Nov 02 2020

9.Load	Distributi	on											
Max. co	oncrete com	pressive	e strain:	0.000	%	Anc	hor Eccentri	city					
Max. co	oncrete com	pressive	e stress:	0.000	psi	ex	0	in		ey	0	in	
Resultin	ng anchor fo	orces / L	oad distr	ibution									
Anchor		(lb) §	Shear Loa	ad (lb)	Compone	nt She	ar Load		(lb)	А	nchor	r Coordinates	(in)
	Load				Shear X		Shear Y				Х	Y	
1	22267.00	0	0.0		0.0		0.0			0	.000	0.000	

Page 104 of 107 Page 5

HDU14 and HD12_CIP

Nov 02 2020

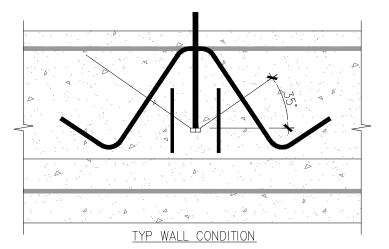
10.Design Proof Tension Loading

Steel Strength				
ACI 318-14 17.4.	1			_
Variables	-			
N _{sa} (lb)) φ			
44269.958	0.75			
Results				
ϕN_{sa}	= 33202.0	lb		Tab
N _{ua}	= 22267.0	lb		
Utilization	= 67.1%			

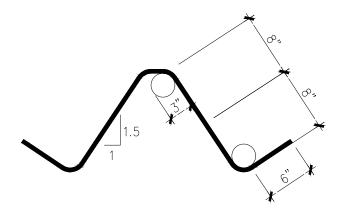
	DEWALT D	ESIGN ASSIST	1.5.2.0	Page 105 o Page
DEWALT	HDU14 and I	HD12_CIP		
				Nov 02 2020
Pullout Strength:				<u>†</u> N
ACI 318-14 17.4.3 Equations				
$N_{pn} = \Psi_{c,P} \cdot N_p$				Eqn. 17.4.3.
$N_p = 8 \cdot A_{brg} \cdot f_c$				Eqn. 17.4.3.
Variables				
,	n^2 f_c (psi)	φ	φs _{eis}	
1.000 1.851	3000	0.70	0.750	
Results				
$\varphi N_{pn} = 23323$	lb			
$N_{ua} = 22267$	lb			Table 17.3.1
Utilization $= 95.5\%$				

Page 106 of 107

Page 7


HDU14 and HD12_CIP

Nov 02 2020


12.Interaction of Tension and Shear Loads Reference ACI 318-14 17.6 Equations $(((N_{ua} / \phi . N_n) + (V_{ua} / \phi . V_n)) / 1.2) <= 1.0$ Eqn. 17.6.3 Variables $\frac{N_{ua} \, / \, \phi \cdot N_n}{0.955} \qquad \qquad \frac{V_{ua} \, / \, \phi \cdot V_n}{0.000}$ Results 1.0 0.955 \leq OK Status : ANCHOR DESIGN CRITERIA IS SATISFIED

HOLDOWN REINFORCEMENT GEOMETRY IN TYPICAL STEMWALL (PER ACI 318-14 CH. 25) Page 107 of 107 RADIUS OF BENDS AND STRAIGHT EXTENSION LENGTH OF HOOKS PER TABLE 25.3.1 FOR 90° HOOK WITH No.3-No.8 BAR SIZE, INSIDE BEND DIAMETER = $6d_b$, $I_{ext} = 12d_b$ DIA = 6(0.5 IN) = 3 IN $I_{ext} = 12(0.5 \text{ IN}) = 6 \text{ IN}$ DEVELOPMENT LENGTH OF STANDARD HOOKS IN TENSION PER SECTION 25.4.3.1 $I_{dh} = MAX([(f_y*\Psi_e^*\Psi_c^*\Psi_r)/(50^*\lambda^*\text{SQRT}(f'_c))]^*d_b$, 8^*d_b , 6 IN)PER TABLE 25.4.3.2 $\Psi_e = 1.0$ FOR UNCOATED OR ZINC AND EPOXY DUAL COATED REINFORCEMENT $\Psi_c = 0.7$ FOR No.11 BAR AND SMALLER HOOKS WITH SIDE COVER (NORMAL TO PLANE OF HOOK) >= 2.5 IN AND FOR 90° HOOK WITH COVER ON BAR EXTENSION BEYOND HOOK >= 2IN $\Psi_r = 1.0$ FOR SECTIONS WITHIN I_{dh} NOT ENCLOSED BY STIRRUPS AT A SPACING $s \le 3^*d_b$ $\lambda = 1.0$ FOR NORMAL WEIGHT CONCRETE USING $f_y = 60,000$ PSI AND $f'_c = 3,000$ PSI $I_{dh} = MAX([(60000)^*(1.0)^*(0.7)^*(1.0))/(50^*(1.0)^*SQRT(3000))]^*(0.5 \text{ IN}), 8^*(0.5 \text{ IN}), 6 \text{ IN}) =$

 $I_{dh} = 7.67$ IN > PROVIDE 8 INCHES MINIMUM EACH SIDE OF CONCRETE BREAKOUT LINE

MAX(7.67 IN, 4 IN, 6 IN)

MAIN REINFORCEMENT SCHEMATIC

PROJECT NO. : DESIGNED BY : COK DRAWN BY : COK ISSUE DATE :	TYPICAL HOLD-DOWN REINFORCEMENT		
DHP Engineering Structural Building Consultants	32008 32nd Ave S, Suite B Federal Way, WA 98001 (253) 220-0848	PREPARED FOR:	